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Health Care Access, Costs, and Treatment Dynamics: 
Evidence from In Vitro Fertilization†

By Barton H. Hamilton, Emily Jungheim, Brian McManus, 
and Juan Pantano*

We study public policies designed to improve access and reduce costs 
for in vitro fertilization (IVF). High out-of-pocket prices can deter 
potential patients from IVF, while active patients have an incentive 
to risk costly high-order pregnancies to improve their odds of treat-
ment success. We analyze IVF’s rich choice structure by estimating 
a dynamic model of patients’ choices within and across treatments. 
Policy simulations show that insurance mandates for treatment or 
hard limits on treatment aggressiveness can improve access or costs, 
but not both. Insurance plus price-based incentives against risky 
treatment, however, can together improve patient welfare and reduce 
medical costs. (JEL G22, I11, I13, I18, J13, J16)

Health care policymakers struggle with the conflicting goals of providing ready 
access to medical care while simultaneously containing costs. For example, in the 
United Kingdom a medical treatment may not be covered by national insurance if 
it fails to meet a cost-effectiveness criterion. US insurance plans have focused on 
alternative cost-sharing arrangements as a means of influencing patient choice, but 
the scope of such arrangements is limited due to relatively low out-of-pocket maxi-
mum payments (Feldstein and Gruber 1995). Optimal health insurance design sug-
gests that a patient desiring an expensive, technologically advanced treatment should 
face higher co-payments (e.g., Chernew, Encinosa, and Hirth 2000). In this spirit, 
recently introduced “value-based” insurance plans tie patient co-pays to the clinical 
value of treatment (Chernew, Rosen, and Fendrick 2007). Spurred by the Affordable 
Care Act, value-based principles have been experimented with in primary care and 
pharmaceutical plans. However, such insurance policies are still uncommon and few 
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empirical studies (e.g., Einav, Finkelstein, and Williams 2016) evaluate the ability 
of treatment-dependent pricing to influence patient behavior and control costs.1

In this paper, we study the impact of alternative policies on patients’ access to 
care, patients’ surplus, and health care costs in a context that embodies many of the 
features of more complicated medical treatment: the market for in vitro fertilization 
(IVF) in the United States. Over the last 20 years, IVF use has increased fourfold 
to 160,000 treatment cycles annually, driven in part by delayed fertility decisions 
by women.2 Because individual cycles of IVF treatment often fail, potential IVF 
patients must solve a complex sequential decision problem under uncertainty about 
whether to initiate and/or continue therapy.3 Patients (in consultation with their 
physicians) must also decide on the type of treatment, based on their preferences 
and the cost of therapy. More aggressive treatment increases the probability of preg-
nancy, thus reducing the need for additional IVF cycles, but it also increases the 
risk of costly higher-order births. IVF patients now account for approximately 50 
percent of all higher-order births, which are generally 4 (twins) to 16 (triplets) times 
more expensive than a singleton birth. Consequently, IVF resembles other medical 
treatments, like those for heart disease or cancer, where dynamic decisions are made 
across a variety of treatment steps while health information is gradually revealed, 
and patients weigh the direct effects of alternative treatment options against poten-
tial side effects (Chan and Hamilton 2006).4

High out-of-pocket costs for IVF (typically $10,000–$15,000 per cycle of treat-
ment) and the high rate of expensive multiple births have led policymakers to con-
sider a variety of interventions in the hopes of achieving two goals: improving IVF 
access in the population and reducing treatment risks and costs. To increase access, 
nine US states have mandated insurance coverage for IVF; these policies endow 
each potential patient with several covered treatment attempts for an out-of-pocket 
price of $2,000–$3,000. While mandates should lead to higher utilization rates, the 
policy also has the potential to contain costs. This might be the case if patients, aware 
that future insured attempts would also occur at a lower price, decide to engage 
in less aggressive treatment by taking fewer embryos. Transferring more embryos 
increases both the probability of pregnancy and the likelihood of a multiple birth. 

1 Baicker, Shepard, and Skinner (2013) simulate the impact of an alternative to Medicare in which all individ-
uals are guaranteed basic benefits, but are provided the option to “top-up” by purchasing additional coverage for 
more expensive, less cost-effective treatments. Such a scheme may lead to more unequal health care spending but 
lower cost growth. 

2 IVF currently accounts for 1 percent of US births. Treatment rates are even higher in some other countries; 
IVF accounted for over 3 percent of 2011 births in Israel, Belgium, Sweden, and Denmark. The aggregate treatment 
statistics reported in this paragraph for the United States are for fresh-embryo treatments during 2012 (Centers for 
Disease Control and Prevention (CDC) 2014). Statistics from European countries are from the European Society of 
Human Reproduction and Embryology’s (2014) ART Fact Sheet. Israel’s IVF birth share is reported by Simonstein 
et al. (2014). 

3 Relatively young US patients (under 35 years old) in 2012 achieved a birth after 40 percent of cycles, while 
patients just under 40 years old had success rates approximately one-half as large. 

4 Medical treatment guidelines themselves traditionally have been static or open-loop. Murphy (2003) intro-
duced the notion of “optimal dynamic treatment regimes” to construct adaptive decision rules, and this framework 
has been applied to physicians treating disease. Murphy’s approach builds on earlier work by Robins (1997) on 
dynamic treatment effects. Her approach, however, focuses on dose-response relationships and does not incorporate 
or estimate patient preferences. This inhibits the study of settings where patients exercise some discretion over 
treatment protocol, and limits the focus to objective outcomes (e.g., biological responses) rather than also allowing 
subjective ones (e.g., welfare). Abbring and Heckman (2007) describe this area of the statistics literature, and they 
contrast the literature’s assumptions with structural econometric approaches that, as in our paper, rely on dynamic 
choice models. 
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As the medical costs associated with birth are generally paid by insurers, treatment 
aggressiveness may be described as moral hazard.

Concern about moral hazard and the high rate of costly multiple births has led 
some European countries to limit the treatment options available to IVF patients in 
the form of an explicit cap on the number of embryos transferred during treatment. 
US medical experts have recently advocated for embryo caps due to their perspec-
tive that a singleton birth is the best possible outcome of treatment.5 While sin-
gle embryo transfer nearly eliminates costly high-order births, it also substantially 
reduces the odds of conception for each IVF attempt. Consequently, such restric-
tions will generally affect the optimal treatment paths selected by forward-looking 
patients. An embryo restriction effectively increases patients’ expected discounted 
cost of conception, which can lead some patients to forgo IVF altogether or abandon 
treatment after initial failure, thus implicitly reducing access to IVF.

To evaluate the impact of these and other alternative policies, we specify a struc-
tural model of forward-looking, infertile patients’ decisions to initiate and/or continue 
IVF treatment using fresh non-donor eggs and embryos.6 Treatment choice dynamics 
for IVF patients reflect a number of mechanisms. First, patients must consider both 
the current and future price of treatment because outcomes are uncertain.7 Due to high 
potential future costs, patients may choose aggressive current treatment that raises both 
the probability of pregnancy and the likelihood of a multiple birth. Second, patients 
may expect their medical condition to change over time. Female fertility declines with 
age, particularly after age 35, when many IVF patients receive treatment. Anticipation 
of future health declines affects current decisions regarding both the initiation choice 
and aggressiveness of treatment. As treatment choices are affected by intertemporal 
variation in prices, health, and information, we expect that possible regulatory changes 
could have subtle impacts throughout the decision process.8

We estimate the model using a novel dataset of the treatment histories of women 
undergoing IVF at an infertility clinic (“the clinic”) between 2001 and 2009, as 
well as data on potential patients in the St. Louis, Missouri market where the clinic 
is located. This setting provides a valuable opportunity to understand how prices, 
preferences, and health affect IVF treatment. The clinic serves patients from both 
Illinois, which mandates insurance coverage of IVF, and Missouri, which does not. 
Consequently, we are able to analyze the decisions of observationally equivalent 
patients facing vastly different prices (about $3,000 for covered patients versus 
$11,000 for those without insurance) undergoing the same procedure with the 
same physicians. Using highly detailed information on the fertility attributes of the 

5 The Practice Committee of the Society for Assisted Reproductive Technology (2012) summarizes a number 
of studies on single embryo transfer and concludes that IVF clinics should promote elective single embryo transfer. 

6 A large majority of IVF cycles use the patient’s own eggs (i.e., non-donor) and transfer embryos that were 
never frozen. 

7 As discussed below, insured patients may be concerned about exhausting their benefits, which raises future 
prices for IVF. This is in contrast to other insurance scenarios in which patients initially experience high out-of-
pocket costs for treatment and then face low prices once their insurance deductible is reached. Aron-Dine et al. 
(2015) examine the dynamic implications of changes in out-of-pocket costs induced by exhaustion of deductibles. 
In a study of insurance’s role in risk protection and moral hazard, Kowalski (2015) accounts for the impact of 
deductibles, co-insurance, and stop-losses in consumers’ nonlinear budget sets. 

8 Fang and Gavazza (2011) provide another example of the dynamic interaction between government policy 
and health choices and outcomes. They provide evidence that the US employer-provided health insurance system 
provides disincentives to invest in health over the life cycle. 
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patients and their treatment choices and outcomes, we estimate the various stochas-
tic processes that determine success at each stage of an IVF treatment cycle. These 
processes, together with the specifications of patient preferences over children and 
the disutility from payments, yield a finite-horizon dynamic optimization problem 
that spans the reproductive years of (otherwise) clinically infertile women. The 
model delivers policy functions that specify: (i) whether to initiate an IVF treat-
ment, (ii) the treatment choices within an IVF cycle, and (iii) whether (and when) 
the patient reattempts to conceive through IVF. We estimate the empirical model in 
three steps. The first step is the estimation of the treatment “technologies” determin-
ing outcomes during the four stages of a given IVF cycle. The second step recovers 
the structural parameters of our within-clinic patient decision model by maximizing 
the likelihood of the observed treatment choice histories. These parameters indicate 
that patients prefer singleton and twin births to the more dangerous triplet births, 
and the utility from additional children falls in the number of children the patient 
already has. These estimates are necessary to assess how patients would respond to 
policies designed to reduce treatment aggressiveness. The third step captures poten-
tial patients’ decisions to ever initiate treatment.

Due to the dynamic incentives and trade-offs highlighted by our model estimates, 
we conduct counterfactual experiments investigating the impact of alternative policy 
proposals on individual patient actions, outcomes, and surplus. We first consider the 
widely-discussed policies of mandated insurance coverage and treatment restrictions 
in the form of embryo caps. Relative to a benchmark case in which no women have 
insurance, introducing universal coverage for IVF results in more than a doubling of 
the share of infertile women who initiate treatment (24 percent versus 58 percent). 
This increase in access is accompanied by an increase in consumer surplus from 
$2,700 to $6,600 per potential patient. While insurance reduces the opportunity cost of 
failed treatment, which in principle could affect embryo transfer rates, we find only a 
small reduction in treatment aggressiveness because our estimates imply that patients 
receive about the same utility from singleton and twin births, implying little reason to 
transfer fewer embryos. Therefore, while this policy succeeds at increasing access, it 
is of little help in terms of cost control. In an effort to contain costs, we next evaluate 
the policy of a “European-style” treatment restriction combined with universal insur-
ance. The strictest policy is a hard limit of one embryo per patient per cycle, which 
pushes treatment initiation down to its no-insurance level, but with greatly reduced 
total costs and aggregate births. In terms of costs per birth, however, the embryo cap 
is actually more expensive than the no-insurance benchmark due to low birth rates.

Given the cost growth induced by universal insurance, and the consumer surplus 
losses associated with treatment restrictions, we explore pricing schemes closer to 
those suggested by theoretical models of optimal insurance design. While current 
practice in IVF allows patients to increase the number of embryos at zero additional 
price, the full social cost of additional embryos is positive due to the increased medi-
cal costs of higher-order pregnancies. Consequently, we evaluate the introduction of 
a value-based plan in which insured patients face “top-up prices” when transferring 
more than one embryo.9 We select top-up prices that cover the (expected) increase 

9 Einav, Finkelstein, and Williams (2016) consider a closely related policy of top-up prices for medical care 
beyond a basic level covered by insurers. 
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in medical expense relative to single-embryo transfers to minimize this potential 
source of moral hazard. Under the top-up policy, patients reduce but do not eliminate 
multiple-embryo transfers, reflecting both a preference for twin births and the incen-
tive to reduce lifetime treatment costs. The presence of insurance allows utilization 
(32 percent) to be greater than the no-insurance benchmark, but with significantly 
lower costs per birth ($63,100 per delivery versus $69,400 under the benchmark), 
due to patient payments against birth expenses and a reduction in multiple birth 
rates.10 In fact, total insurance payments are lower with actuarially fair top-up prices 
and therefore insurance companies might be content with insurance mandates that 
allow top-up price designs similar to those we analyze.

While insurance coverage for IVF in the US is generally proposed as protection 
against the high costs of infertility treatment, Israel takes a different approach by 
insuring birth outcomes directly to encourage family formation. In particular, Israel 
allows unlimited IVF attempts until the patient has two or more children. Our final 
set of counterfactuals compares such outcome-based insurance designs with more 
traditional policies that provide a fixed number of treatments. We find that an out-
come-focused policy has nearly identical patient benefits and costs as mandated 
universal insurance coverage found in US states such as Illinois. The Israeli design 
also highlights the dynamic impacts of IVF policies. We show that age-related limits 
on the Israeli policy leads to welfare and choice differences related to patients antic-
ipating future reductions in policy generosity.

The remainder of the paper proceeds as follows. Section I provides a preview of 
the four stages of an IVF treatment cycle and describes state-level policies governing 
insurance coverage of infertility treatment. Section II covers assumptions on model 
components, which are incorporated into our dynamic structural model of treatment 
choice developed in Section III. In Section IV, we describe the data we obtained 
from the clinic, plus additional market-level data. Section V discusses the empirical 
specification of our model and Section VI provides estimation details. Section VII 
presents the parameter estimates and measures of model fit, and Section VIII contains 
the results from our counterfactual policy simulations. Conclusions follow.

I.  IVF Overview and Our Setting

A. IVF Background

A couple is defined to be medically infertile if they are unable to conceive after 
attempting to do so for 12 months. Initial treatment for infertility often includes the 
use of the drug clomiphene to induce ovulation, or the use of hormone shots with 
or without intrauterine insemination. While such treatments are relatively low cost, 
they are less effective than more technologically advanced treatments, more likely 
to lead to higher order pregnancies, and can be especially poorly suited to older 
patients and those with male factor infertility. Due to these limitations, couples may 
choose to directly undergo IVF. Others may eventually turn to IVF after failing to 
conceive through these less advanced treatments.

10 Greater IVF access can be achieved with smaller top-up prices, if desired. 



3730 THE AMERICAN ECONOMIC REVIEW DECEMBER 2018

Once a patient has decided to use IVF, the treatment cycle unfolds in stages. First, 
the woman takes drugs to stimulate egg production. The patient and doctor moni-
tor the response to these drugs and may choose to cancel the cycle if the patient’s 
response is not favorable; if a cycle is canceled, the patient may start IVF again in 
the future. If the cycle is not canceled, the eggs are retrieved during a minor surgi-
cal procedure and then fertilized in the laboratory. The doctor may recommend the 
use of intracytoplasmic sperm injection (ICSI), in which a single sperm is injected 
into the egg. ICSI was initially used to address male-factor infertility problems, but 
has become more widely used. The patient then decides how many fertilized eggs 
(cleavage-stage embryos) to transfer to the womb; this choice may be constrained 
by the number of embryos that develop. At this point the patient faces an important 
trade-off: the probability of a live birth increases with the number of embryos trans-
ferred, but so does the likelihood of a potentially costly and medically risky multiple 
birth. Lemos et al. (2013) calculate that the average medical cost of a singleton IVF 
pregnancy and initial child medical care is $26,922, while twin and triplet births 
entail costs of $115,238 and $434,668, respectively.11 The high costs of multiple 
births are due largely to shorter gestation periods, which can lead to newborns being 
admitted to neonatal intensive care units. The medical costs calculated by Lemos 
et al. (2013) are typically not paid in full by the IVF patient herself, so they intro-
duce the possibility of moral hazard to the embryo transfer decision.12

If the IVF cycle does not result in a live birth, the patient then must decide 
whether (and when) to attempt another cycle of treatment. Anticipation of future 
opportunities to receive IVF is an important part of a patient’s decisions during the 
current IVF cycle. Because fertility declines with age, subsequent cycles are less 
likely to be successful, all else equal, and couples potentially incur substantial out-
of-pocket cost if they try again. Patients whose treatments succeed may also try IVF 
again if they want to add more children to their families. More broadly, there exists 
some survey evidence (Højgaard et al. 2007, Ryan et al. 2004) which suggests that 
patients may prefer a twin birth to a singleton. This preference could be motivated 
by a variety of factors, including declining fertility with age and the view that a twin 
birth is a cost-effective way to achieve a goal of multiple children.

B. Public Policy and Analysis of Its Impact

A key feature of the US market for IVF is the presence of state-level mandates 
regarding whether and how insurers must offer coverage for infertility treatment, 
including IVF. During the period of our study, 2001–2009, seven states had man-
dates requiring some form of insurance coverage for IVF. Connecticut (after 2005), 
Illinois, Massachusetts, New Jersey, and Rhode Island had the strongest mandates 

11 Lemos et al. (2013) obtained a sample from MarketScan of 437,924 deliveries covered by commercial insur-
ance over the period 2005–2010 to derive their cost figures. Approximately 6,500 of these deliveries were IVF-
related pregnancies. Reported costs were the sum of mother’s medical expenses from 27 weeks prior to delivery to 
30 days after, plus infant medical expenses up to the first birthday. Average health care costs were $5,510 (single-
ton) to $27,469 (triplet) higher for IVF pregnancies compared to other births. 

12 Some medical conditions associated with early births can require life-long medical care, but we do not con-
sider that care’s costs in this paper. 
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for IVF, requiring insurers to cover a certain number of IVF treatment cycles.13 
Prior empirical research on insurance mandates has used a variety of approaches 
to examine issues related to IVF access, embryo transfer patterns, and birth out-
comes. The distinguishing feature of the past research is that potential patients’ 
activity and outcomes are examined in aggregate, either at the population or clinic 
level. Schmidt (2005, 2007); Bitler (2008); Bundorf, Henne, and Becker (2008); 
and Buckles (2013) examine the impact of insurance mandates on population-level 
fertility rates, multiple birth rates, and child health. Hamilton and McManus (2012), 
Jain, Harlow, and Hornstein (2002), and Henne and Bundorf (2008) investigate the 
impact of mandates on the number of patients served, embryo-transfer patterns, and 
birth outcomes at IVF clinics. Bitler and Schmidt (2006, 2012) use survey data 
to examine similar issues. While patient-level decisions and characteristics play a 
central role in generating the aggregate activity studied in these papers, their empir-
ical approaches do not allow a direct examination of choices, counterfactual exper-
iments, or welfare effects.14

An additional policy proposal, motivated by the goal of reducing multiple births 
and their medical costs, is a single-embryo cap for IVF. While single embryo 
transfer is uncommon in the United States (only 10 percent of IVF cycles in 2009 
involved a transfer of one embryo), it is widely practiced in Europe. For example, 
69 percent of IVF cycles in Sweden transfer a single embryo and in Belgium it is 
required. The prior literature on this policy has focused on the medical impact of 
single-embryo transfers, whether voluntary or by rule. For examples, see Ryan et al. 
(2007), Jungheim et al. (2010), Csokmay et al. (2011), or Vélez et al. (2014). By 
contrast, our focus on individual utility-maximizing patients allows us to consider 
treatment initiation decisions and patient welfare in addition to the impact of an 
embryo cap on multiple birth rates and medical costs. Patient initiation and welfare 
are likely to be affected by a cap because additional (costly) cycles are needed, in 
expectation, to achieve a pregnancy, and because some patients may prefer twin 
outcomes to singletons births.

C. The Clinic We Study and Its Market

In order to put our study of a single IVF clinic in context, we assess how the 
clinic and market we study compares to the full US IVF market (Centers for Disease 
Control 2014). In Table 1 we present some statistics on clinic characteristics during 
the sample period of 2001 to 2009. The clinic we study was larger than the average 
US clinic, with 370.2 cycles per year compared to the US average of 217.1 cycles. 
This may be due to the clinic’s position in a large research-oriented hospital, which 
could both influence demand and facilitate the hiring of the clinic’s medical staff. 
The median patient age in our sample is 34 years old, which is slightly below the 
national median. The difference in patient age could be due to demographic patterns, 
or a response to insurance coverage, which may encourage potential patients to try 

13 See Schmidt (2005, 2007). Maryland, Arkansas, and Hawaii are also classified as mandate-to-cover states 
where the mandate includes IVF. Texas has a mandate requiring insurers to offer plans that include IVF coverage. 
Nothing prevents insurers, however, from charging substantially higher prices for plans that include this coverage. 

14 Some studies exist in the medical literature that use patient-level IVF data (e.g., Malizia, Hacker, and Penzias 
2009; Jungheim et al. 2017), but their focus and approach are naturally different from our own. 



3732 THE AMERICAN ECONOMIC REVIEW DECEMBER 2018

IVF more quickly following difficulty conceiving a child naturally. Patient health, as 
measured by the fraction of patients with multiple female infertility diagnoses and 
the fraction of cases with a male infertility diagnosis, is similar between the clinic 
we study and the national averages. Patient treatment choices over ICSI and embryos 
transferred reflect less aggressive treatment in the clinic we study relative to the US 
averages. These treatment patterns, along with a greater birthrate per cycle (33.5 per-
cent at the clinic versus 29.9 percent nationally), may be influenced by the difference 
in median patient age, which affects both treatment choices and outcomes.

Turning to the clinic’s market, we examine how some critical demographic fea-
tures compare to the US population. In our empirical analysis, we assume that poten-
tial patients are drawn from all zip codes with centroids within 75 miles of our clinic. 
The area includes the city of St. Louis, its surrounding suburbs, and some rural towns 
outside of the metro area. This area captures almost all of the patients who ever visit 
the clinic; a small number come from greater distances. Our model accounts for 
age at first birth and wealth as measured through housing value. Fertility timing in 
the St. Louis market is nationally representative: within the age range 22– 44, the 
median maternal age at first birth in 2001 was 31 in both the St. Louis metro area 
and nationally. We use zip code median home value as a proxy for wealth. In the St. 
Louis MSA, this value was $103,900 in the year 2000, while nationally the value 
was slightly higher at $112,100. More specifically, 54.4 percent of St. Louis-area 
women lived in zip codes with median home values above $100,000; nationally the 
share was 56.7 percent. The market’s share of African American women ages 25– 44 
was 19.9 percent in 2000, while the US share was 13.3 percent.

Our study exploits the fact that the clinic draws patients from the greater St. Louis 
metro area, which includes both Missouri, which has no insurance mandate, and 
Illinois, which has a mandate. For patients in our study residing in Illinois and work-
ing for an employer covered by the mandate, insurance plans are required to pay for 
up to four IVF cycles if the woman has no children.15 This insurance coverage pays 
the majority of IVF costs, but about $3,000 in expenses remain for insured patients 
due to co-payments and deductibles. For patients paying out-of-pocket for IVF in 
our sample, the clinic charged about $11,000 per treatment cycle throughout the 

15 If the patient has already had a birth through IVF, the number of remaining covered cycles is set to two. This 
implies that an Illinois resident can have as few as three or as many as six covered cycles, depending on when or 
whether she has a successful cycle. 

Table 1—This Paper’s Clinic in Context

This paper's clinic All US clinics

Number of cycles per year 370.2 217.1
Patient median age 34 35–37 (see note)
Patients with 2+ infertility diagnoses (Y = 1) 0.11 0.12
Male partners with infertility diagnosis (Y = 1) 0.18 0.17
ICSI use (Y = 1) 0.50 0.59
Embryos per cycle 2.41 2.68
Birth rate per cycle (Y = 1) 0.335 0.299

Notes: We use our main data sample to calculate patient median age for the clinic we study.  
For all other statistics, we use the annual summary data published by the CDC for the clinic we 
study and the US as a whole. In the CDC’s data, patient ages are reported in intervals.
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sample period; this figure includes all drugs and medical procedures that are part 
of a complete IVF cycle. The Illinois mandate exempts firms with fewer than 25 
employees and organizations such as the Catholic Church that may object to IVF for 
religious reasons. These individuals pay the full price of IVF. Despite the absence 
of a mandate, some patients from Missouri have private insurance for IVF; in these 
cases the clinic has found that IVF coverage details are similar to those of Illinois 
patients. Some Missouri employers may choose to offer IVF coverage as a means 
to attract and retain employees. We calculate that potential patients from Illinois are 
three times more likely (30 percent versus 11 percent) to have IVF coverage than 
women from Missouri, but even in Illinois insurance penetration is fairly low.

The patient-level information on insurance status allows us to exploit two sources 
of price variation in this setting: cross-section variation is present through the loca-
tions of potential patients, while longitudinal variation arises as patients exhaust 
their insurance coverage over the course of multiple IVF cycles. We assume that 
St. Louis-area potential patients do not endogenously move or change employers 
in order to receive mandated insurance coverage under Illinois’s IVF insurance 
regulations.16

II.  Model Preliminaries

A. Timing

We consider two timing concepts in the model below. First, there are decision 
periods when active patients choose whether to start or delay an IVF cycle. Second, 
in an IVF treatment cycle there are four treatment stages during which patients make 
one choice per stage. The time unit of the model is a three-month period. We index 
the age of the patient (in three-month periods) with ​a​ and calendar time periods 
(also quarterly) with ​t​ , and we use ​j​ to index stages within a period during which 
an IVF cycle is started. At each age ​a​ , within stage ​j​ , the patient selects an action ​​
y​j, a​​​ from the set ​​Y​j​​ .​ The set ​​Y​j​​​ does not vary with ​a​ or ​t.​ Note that there will be two 
indexes, ​a​ and ​t​ , to keep track of time-varying objects in the model; the primary 
index is “​a.​” Age is important because we specify a finite horizon model, and also 
because age itself enters various stage technologies.

We assume that potential patients’ decisions begin with an exogenous event which 
prompts them to consider having children. Women who are able to reproduce natu-
rally (or with less technologically advanced infertility treatments) are immediately 
removed from the process we study in this paper. The remaining women have repro-
ductive difficulties that can be solved by IVF only.17 These women, who constitute 
our “at risk” population, evaluate the expected benefit of beginning IVF relative to 
an outside option. The outside option, which we parameterize below, could include 

16 The typical patient takes two IVF treatments, which would provide up to $16,000 in savings on out-of-pocket 
treatment expenses. Individuals who seek these savings, however, could experience substantial monetary or utility 
costs related to job search and switching, housing search and switching, and potentially suboptimal matches in the 
Illinois labor and housing markets. 

17 Due to data limitations, we do not study the potential patient’s decisions of how quickly to turn to IVF, and 
how this is affected by insurance coverage. We assume, instead, that all couples with fertility problems exhaust the 
same set of alternatives before arriving at the IVF decision. 
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adoption, surrogacy methods of reproduction, or remaining childless. If the woman 
does not begin IVF at this critical moment, we assume she collects the value of the 
outside option and exits the model permanently. We assume that policy changes that 
affect the value of pursuing IVF do not change the value of this outside option.

Individual patients vary in the age at which they consider reproduction. We 
denote as ​​a​0​​​ the patient’s age (in quarters) when she considers IVF. The patient’s 
choice over IVF, if necessary, arrives four quarters after her exogenous decision to 
first attempt reproduction, i.e., at age ​​a​−4​​​. This timeline is consistent with a simpli-
fied setting in which all women believe themselves to be fertile (but are unaware of 
their true infertility status) until their first pregnancy attempt at age ​​a​−4​​.​ A woman 
who is fertile conceives after three months of attempts and gives birth to her first 
baby nine months later. An infertile woman experiences a year of unsuccessful preg-
nancy attempts until, at age ​​a​0​​,​ she considers whether to pursue IVF and therefore 
become a patient at the clinic. If at that point she opts to pursue IVF treatment, the 
patient may continue to make decisions until a terminal age, ​​a​​ max​​. At this age, the 
IVF clinic will no longer treat the patient and her birth probability (via IVF or natu-
rally) is zero.18 This allows a maximum of ​4 × ​(​a​​ max​ − ​a​0​​ + 1)​​ periods for a patient 
whose reproductive decisions start at age ​​a​0​​​. In our data we observe patients with ​​
a​0​​​ between their late twenties and early forties. We define ​​a​​ min​​ to be the youngest 
patient age considered in our model. We set ​​a​​ min​​ to be the first quarter of age 28, and ​​
a​​ max​​ is the final quarter of age 44. Once a patient’s total number of children reaches 
three (or more), she automatically stops making decisions within the model.

In addition to the age index, a time index (​t​) is useful for describing the data sam-
ple and econometric procedure. This index is also necessary to describe the prevail-
ing embryo-transfer guidelines offered by the American Society for Reproductive 
Medicine (ASRM); these guidelines changed once during our sample period, in 
2004. Let ​​t​i, 0​​​ represent the period during which we first observe patient ​i​. We see a 
patient for the last time in ​​T​i​​​ , which might be equal to ​​a​​ max​​ or ​​ 

_
 T ​,​ the end of the sam-

ple period. We assume that all treatment stages that follow from a treatment starting 
in period ​t​ also occur in period ​t.​

B. State Variables and Initial Information

A patient who is considering treatment is aware of several personal characteris-
tics that affect treatment effectiveness and utility. There are two types of state vari-
ables in the model. First, there are the state variables collected in the vector ​Z​ , which 
remain constant within periods but may transition between them. Second, there are 
state variables which are revealed during the stages of a treatment cycle, but do not 
carry over between periods. These variables include information about treatment 
progress and additional taste shocks that affect the value of each treatment option at 
a decision stage. We discuss these variables in detail below, when we introduce our 
model of IVF treatment behavior.

We divide the state vector ​Z​ into two parts. We track a patient’s age (​a​), a measure 
of her wealth (​​z​w​​​), number of prior children (​​k ̃ ​​ ), record of previous payments for 

18 We assume this age upper bound for tractability. The clinic does not have a preset age limitation and, instead, 
evaluates each patient on a case-by-case basis. 
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IVF (​​z​p​​​), insurance status (​ι​), and race (​​z​r​​​) in the state vector ​​Z​​ D​​.19 Some of these 
state variables are time-invariant and others vary in how they evolve between peri-
ods. Age increases exogenously by three months every period. Race is a permanent 
patient characteristic, and we assume wealth is constant also. We construct ​​z​w​​​ with 
zip code-level data on housing values. We focus on patients with zero prior chil-
dren (​​k ̃ ​ = 0​) at the treatment initiation decision, and then ​​k ̃ ​​ evolves endogenously  
as a controlled Markov process which depends on treatment outcomes.20 Likewise, 
the patient’s record of prior IVF payments (​​z​p​​​) and remaining insured cycles evolve 
endogenously according to the patient’s decisions within the model. We initialize 
the number of insured cycles (​ι​) to four (the Illinois mandate value) for all patients 
who ever use insurance, and this number falls by one whenever an insured patient 
advances to the second stage of treatment, when eggs are removed during surgery.21 
The forward-looking patient is aware that IVF’s price increases substantially after 
her fourth insured cycle.

The second part of ​Z​ includes the patient’s biological characteristics, ​​Z​​ B​.​ We 
assume that the patient learns her own ​​Z​​ B​​ if she initiates treatment. The characteris-
tics in ​​Z​​ B​​ include: the women’s antral follicle count (AFC score, ​​z​afc​​​), an indicator 
of her egg-producing ability; whether she has one or more specific infertility diag-
noses (​​z​ff​​​), e.g., endometriosis; and whether her partner has male-factor infertility 
(​​z​mf​​​). At the treatment initiation decision, the patient considers the possible values of ​​
Z​​ B​​ she may have using the population frequency of these characteristics conditional 
on her initiating age, ​​f​​Z​​ B​​​ (​Z​​ B​ | ​a​0​​)​. We assume that the distribution of ​​Z​​ B​​ conditional 
on ​​a​0​​​ is independent of race.

Our assumptions on ​Z​ include a few simplifications that we impose to maintain 
tractability. First, we do not allow patients to receive a detailed fertility screening 
before deciding to initiate treatment, which could be used to reveal ​​Z​​ B​.​ This is a 
simplification that abstracts away from real-world opportunities for potential patients 
to learn about ​​Z​​ B​​ during less sophisticated infertility treatments or stand-alone 
screenings. We make this simplification in order to reduce the dimensions of poten-
tial patient heterogeneity prior to treatment, and because of data scarcity about this 
heterogeneity among the population at large. Second, we assume that patients (and 
their doctors) use no biological data other than ​​Z​​ B​​ in choosing a treatment path for 
patients. We assume that the patient’s observed biological state variables ​​Z​​ B​​ and 
age fully capture her relevant fertility characteristics; there are no unobserved state 
variables that directly affect treatment outcomes, and previous cycles’ choices and 
outcomes also have no direct impact on the current cycle’s outcomes. As implied 
by this assumption, we do not model additional unobserved health characteristics 
which the patient and her doctor learn about through IVF treatment itself.

Once the value of ​​Z​​ B​​ is realized, we consolidate notation and refer to the state 
vector ​Z = [​Z​​ D​ , ​Z​​ B​].​ In addition to acting as a state variable which influences 

19 Bitler and Schmidt (2006) document differences in infertility diagnoses and IVF usage across racial, ethnic, 
and socioeconomic groups. Due to data limitations we consider a simple binary specification for ​​z​r​​​ , which records 
whether a woman is African American. 

20 All patients start with ​​k ̃ ​ = 0​ , and ​​k ̃ ​​ evolves stochastically in each following period. The evolution of ​​k ̃ ​​ depends 
on whether a cycle is started and what choices are made within that cycle. If no cycle is started or an ongoing cycle 
is canceled, then ​​​k ̃ ​​a+1​​ = ​​k ̃ ​​a​​.​ Note that ​​k ̃ ​​ remains constant as well if a cycle is unsuccessful. If a cycle at age ​a​ reaches 
the embryo transfer stage and at least one child is born as a result of that cycle (​​k​a​​ > 1​), then ​​​k ̃ ​​a+4​​ = ​​k ̃ ​​a​​ + ​k​a​​​. 

21 We abstract away from some of the complicated details of the Illinois insurance code, discussed above. 
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treatment outcomes, patient age also functions as a time index, so we add an “a” 
subscript to ​Z​ where appropriate. During an arbitrary age, ​​Z​a​​ = [​Z​ a​ D​, ​Z​​ B​]​ , and at 
treatment initiation the state variables have the value ​​Z​​a​0​​​​.​ We assume that the doctor 
knows how the variables in ​​Z​a​​​ affect treatment outcome probabilities. Each patient 
receives this information from her doctor and also knows her own preferences over 
treatment outcomes.

C. Patients’ Preferences

Patients have preferences over birth outcomes (​k​), and these preferences can 
depend on the patient’s existing number of children (​​   k ​​) at the start of an IVF cycle 
and other personal characteristics. Possible values of ​k​ are in ​{0, 1, 2, 3}​ , and ​​   k ​​ takes 
values in ​{0, 1, 2}​. (These values for ​​   k ​​ cover 98 percent of the patient population at 
the clinic.) We allow patients to have permanent unobservable preference heteroge-
neity, indexed by ​τ​. Let ​U(k | ​   k ​, τ)​ represent the lump-sum utility payoff from a treat-
ment cycle that produces ​k​ children in that individual cycle, conditional on ​​   k ​​ prior 
children and ​τ​. As a normalization, we assume that treatment outcomes with ​k = 0​ 
always result in ​U(k | ​   k ​, τ) = 0​ for all patients. Beyond this normalization, we place 
no restrictions (e.g., concavity) on how ​U(k | ​   k ​, τ)​ changes with ​k​; the restrictions, if 
present, could have the effect of imposing risk preferences over values of ​k​. While 
we treat ​U(k | ​   k ​, τ)​ as a lump-sum benefit, we interpret it as the expected utility from 
having ​k​ additional children, which may include health risks from high-order births. 
The utility from children in ​U(k | ​   k ​, τ)​ is policy-invariant. Other aspects of the model, 
introduced below, may change due to policies we consider, and these can impact the 
forward-looking patient’s continuation value from different birth outcomes.

To maintain tractability, we combine ​U(k | ​   k ​, τ)​ additively with other payoff-related 
terms in an indirect intertemporal expected utility function. Patients undergoing 
treatment experience disutility, scaled by ​α​ , from paying positive prices. When a 
patient pays ​p​ within treatment, she has the immediate utility loss of ​αp​. We allow 
the value of ​α​ to depend on a patient’s wealth, so we write ​α(​z​w​​).​ This specifica-
tion for the effect of ​p​ on utility is consistent with a model where consumption of 
other goods enters additively into the utility, and there is a static budget constraint 
that allocates income between consumption of other goods and IVF expenses.22 
Likewise, a patient’s price depends on her insurance status, so we write ​p(ι).​ An 
additional potential source of disutility is in a patient’s choice to deviate from the 
American Society for Reproductive Medicine (ASRM) guidelines for embryo trans-
fers. During our sample period the ASRM generally recommended against four-em-
bryo transfers for all patients, and single-embryo transfers for older patients.23 
We assume that a patient’s utility falls by ​​η​0​​​ if she makes a choice outside of the 

22 We have access only to a time-invariant, proxy measure of wealth, ​​z​w​​.​ Therefore, we chose not to include an 
intertemporal budget constraint and we do not treat wealth (assets) as a time-varying state variable. High wealth 
operates in the model by changing ​α​ and thus altering the utility cost of reduced consumption of other goods. 

23 Prior to the September 2004 rule change, the ASRM recommended against single-embryo transfers for all 
patients, as well as four-embryo transfers for patients under age 35 and undergoing their first cycle. After the 
guidelines changed in September 2004, the recommendation against four-embryo transfers was extended to all 
patients under age 38 regardless of cycle number, plus patients between ages 38 and 40 who were taking their first 
cycle. The guideline revision also removed the recommendation against single-embryo transfers for patients under 
age 35 on their first cycle. 
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guidelines, with no penalty otherwise. We specify the function ​η(x, ​Z​a​​)​ to combine 
the penalty value and the conditions under which it is applied, with ​x​ as the number 
of embryos and ​​Z​a​​​ capturing the contemporary ASRM guidelines and their relation-
ship to the patient’s current age. We assume that ASRM guidelines changes come as 
a surprise to decision makers, i.e., patients always believe the current policy envi-
ronment is permanent. When the ASRM guidelines change, patients immediately 
reoptimize their treatment plans for the current rules, and then resume the belief that 
the guidelines will never change again.

The remaining parts of patients’ preferences include the value from starting ver-
sus delaying an individual treatment and a terminal value. Relative to a baseline flow 
utility from delay that is normalized to zero, we assume that patients receive the flow 
benefit (or cost) of ​​u​s​​​ during any period in which she begins IVF treatment. Note, ​​
u​s​​​ can include any physical or psychological stress from undergoing IVF. Patients’ 
terminal payoffs are captured by the parameter vector ​​u​T​​ (​z​p​​)​ , which depends on her 
prior payments. The patient receives ​​u​T​​​ at age ​​a​​ max​ + 1​ regardless of whether she 
remains active in the model up until ​​a​​ max​​ or if her decision process ends due to ​k + ​
k ̃ ​ ≥ 3​ at some earlier ​a​.

At each treatment node, the patient’s benefit from the available options includes 
an additional taste shock, ​ε​, which represents heterogeneity in patient’s circum-
stances and preferences. Following Rust (1987), for computational ease, we assume 
that ​ε​ is distributed i.i.d. type 1 extreme value across patients, time periods, treat-
ment stages, and alternatives within each stage. We offset Euler’s constant so that 
​E​[ε]​ = 0​.

Finally, we assume that patients discount future decision periods by the factor ​
β​. We assume that all discounting occurs across periods, and not across treatment 
stages. Treatment options and outcomes that occur ​t​ periods into the future are dis-
counted by ​​β​​ t​​. We do not estimate ​β​ in this paper, so we set its value equal to ​
β = 0.97​.24

D. Technology and Prices

During each IVF stage, a patient makes a choice about treatment, possibly pays a 
price out-of-pocket, and anticipates the outcome of a random process, the results of 
which are revealed before the next choice occurs. We now review notation for these 
processes, i.e., the treatment technologies, and the prices patients pay. We assume 
that the technologies did not change during the sample period. This accords with the 
actual practice of IVF during the early 2000s.

For a patient who has committed to the first stage of IVF treatment, her personal 
characteristics and drug regimen will yield a Peak estradiol (E2) to be revealed at the 
start of Stage 2. The score (​e​) is a signal of the patient’s success in generating eggs. 
During the first stage, however, the patient knows only the distribution of possible ​e​ 
values rather than the signal’s realization. Let ​​f​e​​ (e | ​Z​a​​)​ represent the probability that 
a patient with characteristics ​​Z​a​​​ receives a score with value ​e​ , which takes positive 
integer values. Moving to the second stage, we denote as ​​f​r​​ (r | e, ​Z​a​​)​ the probability 

24 In principle, the nonstationary nature of our model could allow for identification ​β​. In practice, however, this 
parameter is often very difficult to estimate so we chose to fix it at a conventional value. 
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of successfully retrieving ​r​ eggs for a patient with Peak E2 score ​e​ and personal 
characteristics ​​Z​a​​​. A patient with a greater value of ​r​ is more likely to generate a 
large number of embryos in the next stage. Once the patient reaches the third IVF 
stage, she observes her value of ​r​ and considers the distribution over possible num-
bers of embryos, denoted ​X​ , available for transfer, which will be realized following 
her decision on fertilization method (​m​). We write this distribution as ​​f​X​​ (X | r, m, ​Z​a​​)​ , 
and note that it may be shifted by ​r​ , ​m​ , and the patient’s state variables. Finally, in 
Stage 4 the patient considers the number of children (​k​) that will be born, which 
is affected by the number of embryos transferred (​x​ out of the realized ​X​) and the 
patient’s ​Z​ values. The distribution over realizations of ​k​ is ​​f​k​​ (k | x, ​Z​a​​)​.

We specify the prices that patients may pay at three treatment stages. The price 
of action ​y​ in stage ​j​ is ​​p​y, j​​ (ι).​ In the first treatment stage, uninsured patients 
pay ​​p​s, 1​​ =​ $3,000 if they choose the action “start” (​s​), while insured patients 
pay ​​p​s, 1​​ =​ $1,000​.​ The positive price for insured patients is due to deductibles, 
co-payments, and co-insurance charges. Patients who continue (​c​) treatment in 
Stage 2 pay ​​p​c, 2​​ =​ $6,000 if uninsured, and ​​p​c, 2​​ =​ $2,000 if insured. The third-stage 
option to use ICSI (​​m​2​​​) carries a price of ​​p​​m​2​​, 3​​ =​ $2,000 for uninsured patients, and 
a price of zero for insured patients. The final stage, embryo transfer, has zero price 
for all patients regardless of the number of embryos transferred.

III.  Decision Model and Value Functions

We now describe how patient preferences and IVF technology come together 
into a multi-stage decision process. Conditional on starting IVF treatment, a patient 
makes a series of choices regarding the aggressiveness of her treatment and whether 
the treatment continues at all. The patient’s current incentives are affected by her 
future treatment opportunities and prices. Along the way, the patient uses infor-
mation that is known at the start of treatment (e.g., age, current number of chil-
dren, basic fertility diagnoses) and information that is collected incrementally as 
treatment progresses (e.g., the numbers of eggs retrieved and embryos available 
for transfer). See Figure 1 for an illustration of the IVF treatment stages described 
below. The figure contains some notation on utility payoffs that is introduced later.

Some notational conventions are common across stages. We write ​​W​y, j​​ (​Z​a​​ , ​ε​y, j, a​​)​ 
as the value of choice ​y​ during stage ​j​ of a treatment cycle. This function accounts 
for: expectations over future treatment outcomes, taste shocks in current and future 
stages, and optimal behavior in future stages. Patients’ values of ​​W​y, j​​ (​Z​a​​ , ​ε​y, j, a​​)​ 
depend on ​τ,​ but we suppress this term for notational simplicity. Let ​​​ 

_
 W ​​y, j​​​ be the 

systematic component of ​​W​y, j​​ (​Z​a​​ , ​ε​y, j, a​​)​ , i.e., ​​W​y, j​​​ net of the additive preference 
shock ​​ε​y, j, a​​​. We then have

(1)	​ ​W​y, j​​ ( ​Z​a​​ , ​ε​y, j, a​​ )  = ​​ 
_

 W ​​y, j​​ ( ​Z​a​​ )  + ​ε​y, j, a​​ .​

The patient observes the realization of the vector ​​ε​j, a​​​ before making her choice 
during stage ​j​. The patient’s value at the start of stage ​j​ is

(2)	​ ​W​j​​ ( ​Z​a​​ , ​ε​j, a​​ )  = ​ max​ 
y∈​Y​j​​

​ ​ { ​W​j, y​​ ( ​Z​a​​ , ​ε​y, j, a​​ ) }  = ​ max​ 
y∈​Y​j​​

​ ​ { ​​ 
_

 W ​​y, j​​ ( ​Z​a​​ ) + ​ε​y, j, a​​ }.​
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Here, ​E​[​W​j​​ (​Z​a​​ , ​ε​j, a​​)]​​ represents the expected value from an optimal decision within 
treatment stage ​j,​ before observing the realization of ​​ε​j, a​​​. Due to the extreme value 
assumption for ​ε​ , we can write ​E​[​W​j​​ (​Z​a​​ , ​ε​j, a​​ )]​​ with the inclusive value expression:

(3)	​ E​[​W​j​​ (​Z​a​​ , ​ε​j, a​​)]​  =  log​{​ ∑ 
y∈​Y​j​​

​​​ exp  [ ​​ 
_

 W ​​y, j​​ ( ​Z​a​​ ) ]}​.​

We begin by focusing on the treatment stages that occur within IVF, after the patient 
has learned her value of ​​Z​​ B​​. Later in this section we return to the initiation decision.

A. Stage 1: Start Treatment versus Delay

In all periods after the initiation decision, patients who began IVF previously will 
return to Stage 1 and choose between the actions start (​s​) and delay (​d​). If the patient 
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Figure 1. IVF Treatment Stages

Notes: We display patients’ immediate payoffs at each stage of the decision tree, and include expected future pay-
offs only where the patient has reached the end of a within-period decision sequence. We omit some notation to 
avoid clutter.
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starts treatment, she pays the price ​​p​s, 1​​ (ι)​ out-of-pocket and begins a regimen of 
pharmaceuticals to promote egg production.

The value from starting a treatment cycle at age ​a​ is ​​W​s, 1​​ (​Z​a​​ , ​ε​s, 1, a​​)​ , and it 
includes the expected value from continuing to the second stage of treatment 
(​E​[​W​2​​ (​Z​a​​ , ​ε​2, a​​)]​​), the utility normalization relative to delay, ​​u​s​​​, the price of starting 
a treatment cycle, ​​p​s, 1​​​(ι)​​, and a taste shock, ​​ε​s, 1, a​​​. The value of the second stage 
depends on the realization of ​e​ (the Peak E2 score), but this is not known during 
Stage 1. The value from starting a treatment cycle at age ​a​ is then

(4)	​​ W​s, 1​​ (​Z​a​​ , ​ε​s, 1, a​​) = ​​ 
_

 W ​​s, 1​​ (​Z​a​​)  + ​ε​s, 1, a​​

	 = ​ u​s​​ − α(​z​w​​) ​p​s​​ (ι) + ​ε​s, 1, a​​ + ​∑ 
e
​ ​​ E​[​W​2​​ (e, ​Z​a​​, ​ε​2, a​​)]​ ​f​e​​(e| ​Z​a​​ ).​

The value of delaying the IVF decision until the start of the next period is

(5)	​​ W​d, 1​​ (​Z​a​​ , ​ε​d, 1, a​​)  = ​​ 
_

 W ​​d, 1​​ (​Z​a​​) + ​ε​d, 1, a​​

	 =  0 + βE​[​W​1​​ (​Z​a+1​​ , ​ε​1, a+1​​)]​ + ​ε​d, 1, a​​.​

Changes in ​Z​ across periods, in this case, are due to the patient becoming older, which 
affects her fertility characteristics and the probability of a favorable outcome at any 
treatment stage. The discounted expected value ​βE​[​W​1​​ ( ​Z​a+1​​ , ​ε​1, a+1​​ )]​​ accounts for 
the expectation of ​ε​, the payoffs in ​​​ 

_
 W ​​1​​​ associated with starting or delaying IVF at 

age ​a + 1​, and the patient’s option to choose the optimal action. If the patient is 
already at age ​​a​​ max​,​ however, she receives the terminal value ​​W​T​​ (​Z​​a​​ max​​​) = ​u​T​​ (​z​p​​)​ at 
the start of the next period and exits the model. This type of exit is also possible in 
Stages 2 and 4, described below, but we do not list it explicitly.

B. Stage 2: Continue versus Cancel

The patient makes her next significant choice after the value of ​e​ is realized. A 
larger value of ​e​ is generally associated with a larger number of eggs (​r​) that are 
ready for retrieval from the patient’s ovaries. During the second treatment stage, she 
considers ​e​ and her personal characteristics (​​Z​a​​​) while deciding whether to continue 
(​c​) or cancel (​nc​) treatment, thus ​​Y​2​​  =  {nc, c}​. If the patient cancels treatment, 
she pays no additional treatment fees, and she is able to consider starting treatment 
again in the future. If the patient continues treatment, she pays the additional fee ​​
p​c, 2​​ (ι)​ and undergoes a surgical process in which eggs are retrieved.

If the patient decides to stop treatment, she receives the value

(6)	​​ W​nc, 2​​ (e, ​Z​a​​ , ​ε​nc, 2, a​​)  = ​​ 
_

 W ​​nc, 2​​ (​Z​a​​) + ​ε​nc, 2, a​​

	 =  0 + βE​[​W​1​​ (​Z​a+1​​ , ​ε​1, a+1​​)]​ + ​ε​nc, 2, a​​.​
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The value of continuing treatment includes an expectation taken over values of ​r​ 
conditional on the realized signal ​e​ and other patient characteristics:

(7)	​​ W​c, 2​​ (e, ​Z​a​​ , ​ε​c, 2, a​​ ) = ​​ 
_

 W ​​c, 2​​ (e, ​Z​a​​ ) + ​ε​c, 2, a​​

	 =  −α(​z​w​​ ) ​p​c​​ (ι) + ​ε​c, 2, a​​

	 + ​∑ 
r
​ ​​ E​[​W​3​​ (r, ​Z​a​​ , ​ε​3, a​​ )]​ ​f​r​​ (r | e, ​Z​a​​ ).​

The full value of the second stage is the maximum of these two options.

C. Stage 3: Fertilization

If treatment is not canceled, the patient’s eggs are retrieved and she observes the 
realized value of ​r​. The patient’s next choice is how to fertilize the eggs. The fertil-
ization method is represented by the variable ​m​ , and the patient’s options are: natural 
fertilization ​(​m​1​​)​ or with ICSI ​(​m​2​​)​. Thus, ​​Y​3​​ = {​m​1​​ , ​m​2​​}​. The patient’s character-
istics ​(​Z​a​​)​ , her number of eggs ​(r)​ , and her fertilization choice ​(m)​ determine the 
number of viable embryos generated for the patient. Couples with male factor infer-
tility ​​(​z​mf​​ = 1)​​ are likely to receive the greatest benefits from fertilizing via ICSI ​​
(m = ​m​2​​)​.​ The price of option m is ​​p​m, 3​​(ι)​, which is positive for uninsured patients 
when m = ​​m​2​​​, and zero otherwise.

Let ​X​ represent a possible realization for the number of embryos. Possible val-
ues of ​X​ are in ​{0, 1, 2, 3, 4+}​. We cap the maximum value of ​X​ at ​4​ because this is 
the greatest number of embryos that we see transferred to patients during the final 
treatment stage. When making her choice over fertilization method, the patient con-
siders the probability of receiving ​X​ embryos, ​​f​X​​ (X | r, m, ​Z​a​​)​. We write the patient’s 
choice-specific value from a third-stage action:

(8)	​​ W​m, 3​​ (r, ​Z​a​​ , ​ε​m, 3, a​​) = ​​ 
_

 W ​​m, 3​​ (r, ​Z​a​​) + ​ε​m, 3, a​​

	 =  −α(​z​w​​) ​p​m, 3​​ (ι) + ​ε​m, 3, a​​

	 + ​∑ 
X
​ ​​ E​[​W​4​​ (X, ​Z​a​​)]​ ​f​X​​ (X | r, m, ​Z​a​​).​

The patient selects the action, ​m​ , with the greater of two ​​W​m, 3​​ (r, ​Z​a​​ , ​ε​m, 3, a​​)​ values.

D. Stage 4: Embryo Transfer

At the start of the fourth and final treatment stage, the patient learns her num-
ber of viable embryos, ​X​. The patient chooses ​x​ , the number of embryos to trans-
fer during the final treatment stage, subject to ​x  ≤  X.​ We assume that the patient 
selects ​x = 0​ only if ​X = 0​. A patient’s treatment outcome is influenced by her 
number of embryos (​x​) and her personal characteristics (​Z​). As a result of treatment, ​
k​ children are born with probability ​​f​k​​ (k | x, ​Z​a​​)​. Under current policy, there is no 
price for this treatment stage. If treatment fails she moves to the start of the next 
period, but if treatment is successful she waits for three additional periods (i.e., nine 
months) before making her next reproductive decision.
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When the patient elects to transfer ​x​ embryos, she receives an expected benefit of

(9) ​​ W​x, 4​​ (X, ​Z​a​​ , ​ε​x, 4, a​​ ) = ​​ 
_

 W ​​x, 4​​ (X, ​Z​a​​) + ​ε​x, 4, a​​

	 =  η(x, ​Z​a​​) + ​ε​x, 4, a​​ + ​f​k​​ (0 | x, ​Z​a​​) βE​[​W​1​​ (​Z​a+1​​ , ​ε​1, a+1​​)]​
	 + ​ ∑ 

k>0
​​​ ​f​k​​(k | x, ​Z​a​​)​{U(k| ​​k ̃ ​​a​​, τ) + ​β​​ 4​ E​[​W​1​​ (​Z​a+4​​, ​ε​1, a+4​​ )]​}​.​

This expression includes the possibilities of failed treatment (​k = 0​) and successful 
treatment (​k > 0​). The future value of a patient’s decision, ​E​[​W​1​​​( · )​]​​ , depends on 
the realization of the current treatment and the prices and policies that constrain the 
patient in future periods. If the treatment is successful, ​​Z​a​​​ evolves to a value ​​Z​a+4​​​ 
which reflects that the patient is one full year older and has ​k​ additional children. 
Moreover, this future value is discounted at ​​β​​ 4​​. If treatment fails, then the next deci-
sion’s value is discounted by ​β​ , and ​​Z​a+1​​​ reflects that the patient is just three months 
older. The value function captures the patient’s benefit from building a family of a 
certain size during her fertile years, so statements about a patient’s desire to avoid the 
risk of lifetime childlessness would be made in reference to ​W​ rather than ​U(k|​k ̃ ​, τ)​.

E. Initiation Decision

Now consider the decision of a potential patient at age ​​a​0​​​ who is deciding whether 
to start IVF for the very first time. This is somewhat different from the decision to 
begin a new cycle by an already-active patient. We make the simplifying assumption 
that this potential patient does not yet know her values of ​​Z​​ B​​, but she knows the 
population distribution of ​​Z​​ B​​ values conditional on age, ​​f​​Z​​ B​​​ (​Z​ ​a​0​​​ 

B ​ | ​a​0​​)​. The potential 
patient’s expected value from starting treatment is

	​ W​(​Z​ ​a​0​​​ 
D ​)​  =  E​[​​ 

_
 W ​​s, 1​​ (​Z​​a​0​​​​) | ​Z​ ​a​0​​​ 

D ​]​  = ​ ∑ 
​Z​ ​a​0​​​ 

B ​
​ ​​ ​​ 
_

 W ​​s, 1​​ (​Z​ ​a​0​​​ 
D ​, ​Z​ ​a​0​​​ 

B ​) ​f​​Z​​ B​​​ (​Z​ ​a​0​​​ 
B ​ | ​a​0​​),​

where we make the distinction between the state variables known prior to treat-
ment (​​Z​ ​a​0​​​ 

D ​​) and those learned after treatment begins. The potential patient com-
pares ​W​(​Z​ ​a​0​​​ 

D ​)​​ to the utility from foregoing treatment, which we specify as ​​W​​ OUT​​(​z​r​​)​ 
= μ​(​z​r​​)​ + ν​. The parameter ​μ​(​z​r​​)​​ captures the mean value of the outside option 
for all potential patients of race ​​z​r​​​. (We use the notation μ(​​z​r​​​) and μ to refer to the 
outside option’s mean value for an individual patient of a given race; we write μ to 
refer to the vector of individual μ values that we estimate.) There is evidence that 
African American women are less inclined to pursue infertility treatment, and in 
our model this would be reflected in a higher value of ​μ​. The value of ​ν​ is specific 
to each potential patient and captures heterogeneity in the value of permanently 
foregoing IVF treatment; it explains why potential patients with the same ​​Z​ ​a​0​​​ 

D ​​ and 
(unobserved) ​τ​ make different choices with respect to ever pursuing IVF.25 One 
possible interpretation of ​ν​ is that of a sunk utility cost that must be paid to pursue 
IVF. Some infertile women with strong objections to IVF, e.g., because of religious 
beliefs, may refuse treatment even if it is free and has no chance of failure. Notice, ​

25 Note that there is no ​​ε​1, s​​​ for this very first cycle. 
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τ​ and ​ν​ play fundamentally different roles in the model. Here, ​τ​ characterizes per-
manent differences in utility from children. Potential patients know both their ​ν​ and ​
τ​ before embarking in IVF treatment. The ​ν​ term captures idiosyncratic preferences 
for taking the outside option relative to pursuing IVF but plays no further role once 
the potential patient becomes a patient.26

Under these assumptions, the potential patient enters the clinic to initiate her 
first IVF cycle if the expected value of pursuing IVF is greater than the value of 
foregoing treatment, and she exits the model otherwise. We let the indicator ​I​ equal 
1 whenever a potential patient initiates IVF treatment, and equal 0 otherwise. Then

	​ I  =  1  ⇔  W​(​Z​ ​a​0​​​ 
D ​)​ ≥ μ​(​z​r​​)​ + ν.​

To make the decision problem more explicit in some of the analysis below, we 
sometimes add the policy index ​g​ to our notation for the value of starting a patient’s 
first cycle, i.e., ​​​ 

_
 W ​​s, 1​​​(​Z​​a​0​​​​, g)​​. We let ​g = ​g​E​​​ represent the empirical baseline that we 

observe during the sample period. The index ​g​ captures elements such as pricing, 
insurance, regulations, etc. Under alternative environments, the value of ​​​ 

_
 W ​​s, 1​​​ (and 

all other ​​​ 
_

 W ​​y, j​​​ that follow) changes and therefore initiation decisions are affected.

IV.  Data

A. Clinic Data

Our primary data cover individual patient histories at the clinic during 2001–2009. 
We observe all treatment cycles conducted during this period for patients who 
underwent their first-ever IVF cycle between 2001 and 2007, plus we observe cycles 
during 2001–2009 for some patients who first received IVF before 2001. While 
the data allow us to describe many patients’ IVF histories from the start of their 
treatments, we do not observe whether a patient returns to the clinic after 2009 or 
visits a different clinic after her final visit at the clinic. We handle this potential 
right-censoring by assuming that patients continue to make choices as described by 
our model, with no changes to the policy environment, prices, or technology.

The main data sample contains treatment histories for 587 patients who use only 
fresh embryos (i.e., not frozen), received their first-ever IVF cycle at the clinic 
between 2001 and 2007, and have complete data on their personal characteristics and 
treatment details.27 We supplement these observations with data from an additional 
519 patients for whom we have data on all state variables and most treatment choices. 
We refer to the expanded data as the “first-stage sample.” The treatment histories 
contain information on 1,027 initiated cycles in the main sample and 2,167 in the full 
first-stage sample. Beyond the initiation decision and its Peak E2 score realization, 
the main sample contains information on an additional 2,785 choices and stochastic 

26 In a more general model, observationally similar patients, even with same ​τ​ and facing same ​ε​ , could make 
different decisions, perhaps with those with high values of ​ν​ being more reluctant to use IVF multiple times than 
those with low values of ​ν​. For computational tractability, though, we work with a simpler model in which once a 
woman decides to use IVF, heterogeneity in ​ν​ is no longer relevant for her decision-making within the clinic. 

27 In practice, patients may choose to freeze excess embryos for potential later use, but we do not examine that 
decision. Frozen embryo cycles account for only ​12 percent​ of the clinic’s treatments during the sample period. 
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health state outcomes from Stages 2–4 of IVF cycles. In the full first-stage sample 
we have complete data on 5,052 Stage 2–4 choices and health outcomes.

In Table 2 we display some basic characteristics of the patients, their treatment 
choices, and their outcomes; we separately report statistics for the main sample of 587 
patients and the 1,106 patients in the full first-stage sample. The average patient in the 
main sample is 34 years old at the time of her first cycle in the clinic, and over half of 
all patients have insurance. Most insured patients are from Illinois but not all; likewise, 
most Illinois patients are insured but not all of them. Most patients’ homes are in a zip 
code with a median house price above $100,000, which we use as a proxy for patient 
wealth (​​z​w​​​). We track race as a binary variable which indicates whether the patient is 
African American (​​z​r​​ = 1​) or not (​​z​r​​ = 0​); 95 percent of patients have ​​z​r​​ = 0.​ The 
patients in the main sample have no children when they initiated treatment, but some 
patients in the first-stage sample have prior children. The biological variables (​​Z​​ B​​) 
exhibit some minor differences between the main and first-stage samples, with the 
former set of patients displaying slightly worse fertility characteristics.

At the bottom of Table 2 we display patient-level statistics on treatment choices 
and outcomes. Patients in the main sample average ​1.75​ treatments during the 
sample period, and about one-half experience at least one birth during their full 
treatment history. In Table 3 we report summary statistics on choices and outcomes 
within treatment stages. Most patients at Stage 2 choose to continue treatment, with 
only a ​14 percent​ cancellation rate. Most patients (​60 percent​) fertilize their eggs 
with ICSI; this rate is closer to ​90 percent​ when male-factor infertility is present.28 
Finally, patients take 2.3 embryos on average during a treatment. The embryo trans-
fer choices are most often made with a choice set of ​4+​ embryos, due to over 6 
embryos being generated during an average cycle. At the bottom of Table 3 we 

28 While the options “full ICSI” and “partial ICSI” are separated in the data, we group them together in our 
model. 

Table 2—Patient-Level Characteristics

Main sample
First-stage 

sample

N = 587 N = 1,106

Mean SD Mean SD

Panel A. Demographic state variables (​​Z​​ D​​)
Patient age at initiation 34.30 4.02 33.36 4.70
Insured at initiation? (Y = 1) 0.54 0.50 0.59 0.49
Wealthy zip code? (Y = 1) 0.82 0.39 0.79 0.41
Prior children at initiation 0.00 0.00 0.32 0.58
African American? (Y = 1) 0.05 0.21 0.05 0.21

Panel B. Biological state variables (​​Z​​ B​​)
AFC score 14.34 7.96 14.61 8.13
Female fertility problem? (Y = 1) 0.80 0.40 0.69 0.46
Male fertility problem? (Y = 1) 0.34 0.48 0.30 0.46

Panel C. Aggregate actions and outcomes
Total cycles 1.75 1.02 1.96 1.21
Birth during sample period? (Y = 1) 0.53 0.50 0.54 0.50

Notes: We use the main sample in second-stage estimation of patients’ choices. We use the first-stage sample to 
estimate treatment technologies.



3745HAMILTON ET AL.: ACCESS, COSTS, AND TREATMENT DYNAMICSVOL. 108 NO. 12

report treatment-level outcomes. To obtain the main sample’s average of 0.51 chil-
dren born per cycle, we include all Stage 4 decisions with ​x > 0​ and birth outcomes 
in ​{0, 1, 2, 3}.​ A singleton birth occurs in 27 percent of cycles, and twins occur in an 
additional 12 percent. While we observe no triplet births in the main sample, they 
occur at a rate of about 1 percent in the larger first-stage sample; this allows us to 
account for triplet risk when estimating the structural model.29

Some correlations among patient characteristics and treatment sequences sug-
gest the role of dynamics and the importance of the state variables in patients’ 
decision-making. Almost 60 percent of patients whose first cycle was unsuccess-
ful returned for one or more additional cycles, while 16 percent of patients with 
a first-cycle singleton and zero patients with first-cycle twins returned for addi-
tional treatment. Patients who receive Peak E2 scores in the lowest quartile chose 
to cancel treatment in 40 percent of all cases, while patients with scores in the 
twenty-fifth to seventy-fifth percentile cancel only 4 percent of cycles. Patients who 
are ​35​ or older take an average of ​2.6​ embryos in their first cycle, while younger 
patients take ​two​ embryos on average. Uninsured patients take more embryos 
(​2.4​) during their first cycle than insured patients (​2.2​), but this difference, which 
is statistically significant at the first cycle, shrinks in the second and third cycle as 
insurance coverage is drawn down.

B. Market Data

We use several pieces of market data to describe the set of potential patients for 
our clinic. These data are used in a separate estimation step to estimate a model of 
treatment initiation. We assume that potential patients are drawn from all zip codes 
with centroids within 75 miles of our clinic. The area includes the city of St. Louis, 

29 In 2009, 1.6 percent of all US IVF births from fresh non-donor cycles were triplets or more. Conditional on 
three or more embryos transferred, the triplet rate was 3.6 percent (Centers for Disease Control 2014). 

Table 3—Actions and Outcomes within Treatment

Main sample First-stage sample

Observations Mean SD Observations Mean SD

Panel A. Stage 1–4 actions
Cancel treatment? (Y = 1) 1,027 0.14 0.35 1,859 0.14 0.35
Fertilization method? (ICSI = 1) 879 0.60 0.49 1,597 0.59 0.49
Number of embryos transferred 879 2.28 0.82 1,596 2.32 0.83

Panel B. Stage 1–3 outcomes
Peak E2 score 1,027 16.82 9.73 1,858 17.10 9.57
Eggs retrieved 879 10.60 5.46 1,597 10.87 5.51
Embryos generated 879 6.12 3.74 1,597 6.37 3.85
4+ embryos? (Y = 1) 879 0.74 0.44 1,597 0.77 0.42

Panel C. Stage 4 outcomes
Children born 848 0.51 0.70 1,545 0.57 0.75
Singleton birth? (Y = 1) 848 0.27 0.45 1,545 0.28 0.45
Twin birth? (Y = 1) 848 0.12 0.32 1,545 0.13 0.34
Triplet birth? (Y = 1) 848 0.00 0.00 1,545 0.01 0.10

Notes: We use the main sample in second-stage estimation of patients’ choices. We use the first-stage sample to 
estimate treatment technologies.
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its surrounding suburbs, and some rural towns outside of the metro area. This area 
captures almost all of the patients who ever visit the clinic; a small number come 
from greater distances.

We first describe the various data sources for the market data, and then we describe 
how they are assembled into an estimate of the “at risk” population. We use the Centers 
for Disease Control and Prevention’s (CDC) Vital Statistics database to construct the 
market’s distribution of maternal age at first birth. This distribution, along with esti-
mates of infertility rates by age from Dunson, Baird, and Colombo (2004), allows us 
to construct an age distribution for women who may consider IVF. We supplement the 
Dunson et al. estimates with data from the National Survey of Family Growth (NSFG) 
to estimate the difference in infertility rates by race. For zip code level information on 
the population share with private IVF insurance, we use data from the 2012 American 
Community Survey (ACS) and combine it with other sources of information, which 
we describe in the Appendix. We collect zip code-level data on race and the median 
home values from the 2000 Decennial Population Census. The home value data allow 
us to provide an estimate for the distribution of patients’ wealth. We combine the 
various zip code-level data to construct an estimate of the joint distribution of IVF 
insurance coverage and our measure of wealth. Finally, we use data from the CDC on 
the number of cycles conducted at each infertility clinic in the market to assess how 
many in the pool of potential patients would rely on the clinic we study (rather than a 
different clinic), if they decided to pursue IVF.

Next, we describe how we construct the pool of potential patients. Assuming 
stationarity and stable cohort sizes, at any given point in time (quarter) there are ​​
N​​ stl​​ couples in the St. Louis region who have optimal life-cycle fertility plans that 
induce them to pursue their first pregnancy. Therefore, in every quarter ​t​ there is a 
race-specific distribution of age at first (attempted) birth for these women ​​f​t​​​(a | ​z​r​​)​.​ 
Some of them will succeed immediately, while others will take more time. If, after 
12 months of natural attempts, the woman does not get pregnant, the couple is diag-
nosed with clinical infertility. Let ​inf ​(a, ​z​r​​)​​ be an age- and race-specific infertility 
rate which increases with age. Together, ​​(​N​​ stl​, ​f​t​​​(a | ​z​r​​)​, inf ​(a, ​z​r​​)​)​​ provide the num-
ber of women, ​​​N ̃ ​​ a, ​z​r​​​ 

inf
 ​ ,​ of each age and race who realize that they are unable to con-

ceive without IVF. These ​​​N ̃ ​​​  inf​ = ​∑ ​z​r​​=0​ 1  ​​ ​∑ a=​a​​ min​​ ​a​​ max​ ​​ ​​ N ̃ ​​ a, ​z​r​​​ 
 inf ​ ​ women constitute the risk set, 

i.e., all women in the St. Louis region who may consider IVF treatment. In a final 
step, we obtain the risk set for our clinic by deflating ​​​N ̃ ​​​  inf​​ to match the clinic’s mar-
ket share as reported by the CDC. In total across all years of the sample period, we 
estimate that ​​N​​ inf​ = 2,781​ women consider treatment at the clinic we study​.​ See 
Appendix B for additional details on the calculation of ​​N​​ inf​​ and its relationship to  
​​f​​Z​​ D​​​​(​Z​ ​a​0​​​ 

D ​)​,​ the distribution of patient characteristics.
We compute race-specific empirical initiation shares, ​​s​​ init​​(​z​r​​)​​ , for the clinic. 

We observe that ​​N​​ clin​ =​ ​828​ new patients (including 35 African American) initi-
ated treatment at the clinic during the period 2001–2007.30 Using our estimates 
of ​​N​​ inf​​(​z​r​​)​​ , we calculate the share

(10)	​ ​s​​ init​​(​z​r​​)​  ≈ ​ 
​N​​ clin​​(​z​r​​)​ _ 
​N​​ inf​​(​z​r​​)​

 ​​.

30 We use the 587 with complete data in estimation, but we have records for 828 patients initiating treatment 
over this period. 
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We find ​​s​​ init​​(0)​  =  0.072​ and ​​s​​ init​​(1)​  =  0.346​ which means that 7.2 percent of the 
clinic’s African American potential patients and 34.6 percent of its remaining poten-
tial patients decided to pursue treatment. The remaining 1,953 potential patients 
could be induced to seek IVF treatment through large enough increases in ​​​ 

_
 W ​​1, s​​.​

V.  Empirical Specification

In this section we describe our assumptions regarding functional forms and how 
outcomes and utility may vary with patients’ observable characteristics.

A. Treatment Technologies

During each treatment stage, a patient makes her choice while considering a 
probability distribution over outcomes that will be realized at the stage’s conclu-
sion. We now describe the functional forms and data assumptions that describe the 
distributions.

In the first stage, a woman knows some basic facts about her fertility including ​​
Z​​ B​​ , and takes drugs to stimulate egg production. We assume that the drug dosage 
is a function of the patient’s age and her values of ​​Z​​ B​​. The woman’s characteristics 
and drug dosage affect a stochastic process that determines her Peak E2 score, ​e​. We 
model the probability of a particular ​e​ with a multinomial logit model for ​​f​e​​ (e| ​Z​a​​)​. 
In the data we observe ​e​ values between ​0​ and 10,196 pg/mL, with a mean and 
median around 1,600, and 99 percent of all values below 4,500. In the empirical 
implementation, we assume that the possible realizations of ​e​ are in discrete bins 
with values 0–500, 500–1,000, 1,000–1,500, 1,500–2,000, 2,000–2,500, and over 
2,500. We use a multinomial logit model here rather than an ordered model because 
especially high values of ​e​ can be seen as bad for the patient.

In estimating ​​f​e​​ ,​ we include variables for a woman’s age, the average of any 
AFC scores she receives over the entire treatment history, and her number of ini-
tially diagnosed fertility problems. The age variables we include are indicators for 
whether the patient’s age is 28, 29–31, 32–34, 35–37, 38–40, 41–43, or 44. (We 
exclude ages 35–37 for the empirical implementation.) We separate the patient’s 
AFC score ​​(​z​afc​​)​​ into categories for scores from 1–5, 6–10, 11–15, 16–25, and 26+, 
with the highest category excluded for the empirical implementation. For patient 
fertility problems, we include an indicator for whether the patient has one or more 
distinct diagnosed issues ​​(​z​ff​​ = 1)​​.

In the second stage, the patient observes her realized value of ​e​ and considers the 
number of eggs, ​r​ , that might be retrieved if she continues treatment. The distribu-
tion of ​r​ depends on ​e​ and ​​Z​a​​​. In the data, ​r​ takes integer values from ​0​ to ​38​ with a 
mean of ​10.6​ and median of ​10​. The ninetieth percentile is at ​r = 18​ , and 99 percent 
of all ​r​ values are below ​27.​ We use an ordered probit model for this distribution, 
with possible values of ​r​ as 0–4, 5–10, 11–20, and 21+. The variables that can 
affect the realization of ​r​ are indicators for possible values of ​e​, split as they are in 
the model for ​​f​e​​​; the same age categories in ​​f​e​​​; the AFC score categories from ​​f​e​​​; and 
the indicator for whether a patient has one or more documented fertility problems.

In the third stage, the patient observes her realized value of ​r​ and selects a fertil-
ization method (​m​). The patient’s number of transferable embryos, ​X,​ will depend 
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on ​r​ , ​m​ , and the patient’s characteristics. We model the process determining ​X​ with 
an ordered probit. We include as regressors: the possible values of ​r​ as described in 
the model for ​​f​r​​​; the patient’s age, AFC score, and fertility problems as described 
above; and the patient’s choice of ​m​ plus the interaction of ​m​ with an indicator for 
male-factor infertility.

In the final stage of treatment, the patient is subject to the stochastic process ​​f​k​​ ,​ 
which determines her number of live births. We model ​​f​k​​​ as a multinomial logit, with 
the probability of each outcome determined by the number of transferred embryos, 
the patient’s age, and the indicator for female fertility problems. Some patient and 
treatment characteristics, like AFC score or male factor infertility, are not relevant 
here because their roles in determining outcomes is finished once the patient has her 
set of transferable embryos.

B. Utility Assumptions

We must make functional form assumptions for several expressions that are rele-
vant for patients’ utility. In addition to the restriction that all patients have the payoff 
of ​U(k|​k ̃ ​, τ ) = 0​ from zero-birth outcomes, we assume that outcomes with ​k > 0​ 
provide utility according to

​	 U(k|​k ̃ ​, τ )  = ​ u​k​​ + κ × 1 {​k ̃ ​ > 0} + ζ × 1 { τ  =  2}​.

The parameter vector ​(​u​1​​ , ​u​2​​ , ​u​3​​)​ captures the lump-sum payoff from a singleton, 
twin, and triplet birth to a patient with no prior children (​​k ̃ ​ = 0​). Given the health 
risks and other challenges for triplets, we anticipate that ​​u​3​​ < ​u​2​​​ and ​​u​3​​ < ​u​1​​​ , but 
these parameters are unrestricted in estimation. The parameter ​κ​ captures any differ-
ence in the marginal benefit of a birth to patients with prior children (​​k ̃ ​ > 0​); dimin-
ishing marginal utility from children would imply that ​κ​ is negative. We account for 
the impact of ASRM guidelines on utility by specifying ​η(x, ​Z​a​​) = ​ η​0​​ × 1 { x, ​Z​a​​}​ , 
where ​​η​0​​​ is a constant utility penalty and ​1 { x, ​Z​a​​}​ is an indicator function that is 
equal to one for any choice of embryos (​x​) that is outside of the contemporary 
ASRM guidelines for a patient with state variables ​​Z​a​​​.31

We assume a simple two-type structure for patients’ permanent unobserved het-
erogeneity. A share of patients with type ​τ = 1​ has preferences for birth outcomes 
represented only by ​​(​u​1​​ , ​u​2​​ , ​u​3​​ , κ)​​ , while the remaining patients (with ​τ  =  2​) have, 
in addition, their utility payoff shifted by a scalar parameter ​ζ​. A patient’s probabil-
ity of being of type ​τ  =  2​ depends on her state values at the time she initiated treat-
ment, ​​Z​ ​a​0​​​ 

D ​​. Along with ​​a​0​​​ , we allow the distribution of ​τ,​ conditional on initiation, 
to depend on a measure of her wealth level ​(​z​w​​)​ , her race ​​(​z​r​​)​,​ her initial number 
of insurance-covered cycles (​​ι​​a​0​​​​​), and a dummy (​​z​asr​m​0​​​​​) for the ASRM guideline 
regime when treatment started. The dependence of the distribution of ​τ​ on the state 
variables reflects the need to acknowledge that differences across patients’ circum-
stances will result in a different selection of patients depending upon their intensity 

31 In practice, no patients in the main data choose to go outside of the guidelines by more than a single embryo, 
so we do not have the opportunity to estimate different penalties for different degrees of violation. 



3749HAMILTON ET AL.: ACCESS, COSTS, AND TREATMENT DYNAMICSVOL. 108 NO. 12

of taste for children. The value of initiation depends on various state variables and the 
unobserved type, and we expect a differential propensity to initiate by the two types. 
For example, conditional on being uninsured, one would expect a higher prevalence 
of patients with high taste for children (relative to the prevalence among potential 
patients). As a result, regardless of whether types are correlated with demographics 
in the pool of potential patients, the distribution of types within the clinic will surely 
depend on the state variables. We assume that the probability of a high type (​τ =  2)​ is

	​ Pr(τ  =  2 | ​Z​ ​a​0​​​ 
D ​ , I = 1, ρ)  = ​ 

exp (​ρ​0​​ + ​ρ​1​​ ​a​0​​ + ​ρ​2​​ ​z​w​​ + ​ρ​3​​ ​ι​​a​0​​​​ + ​ρ​4​​ ​z​asr​m​0​​​​ + ​ρ​5​​ ​z​r​​)
    ____________________________________     

1 + exp (​ρ​0​​ + ​ρ​1​​ ​a​0​​ + ​ρ​2​​ ​z​w​​ + ​ρ​3​​ ​ι​0​​ + ​ρ​4​​ ​z​asr​m​0​​​​ + ​ρ​5​​ ​z​r​​)
 ​ .​

During estimation we restrict ​​ρ​0​​ < 0​ for computational purposes, but this adds 
no real restrictions on the utility parameters. For notational convenience, we let ​ρ​ 
represent a column vector of ​​​{​ρ​j​​}​​ j=0​ 5

  ​​ values. In addition, we write ​[1, ​Z​ ​a​0​​​ 
D ​ ]​ as a vector 

containing 1 and an individual patient’s row vector ​​Z​ ​a​0​​​ 
D ​​ , and we let ​Λ​ represent the 

logistic distribution function so that ​Λ([1, ​Z​ ​a​0​​​ 
D ​ ] ρ) = Pr (τ = 2 | ​Z​ ​a​0​​​ 

D ​ , I = 1, ρ).​
As the patient makes her choice between starting a treatment cycle or delaying, 

she considers the additional flow benefit ​​u​s​​​ which she receives (or sacrifices) when 
she begins a treatment cycle. We assume that ​​u​s​​ = δ​ , a scalar parameter. The value 
of ​​u​s​​​ is identified, in part, by the frequency with which clinic patients return for 
additional treatment cycles following their first cycle.

The first three stages of IVF treatment include ​α(​z​w​​) ,​ the disutility from pay-
ing a price ​p​ for some treatment component. We specify ​α(​z​w​​)​ as an affine func-
tion of ​​z​w​​​: ​α( ​z​w​​ ) = ​α​0​​ + ​α​w​​ ​z​w​​​. Since the effect of price is subtracted from 
within-stage value functions above, we expect ​​α​0​​​ to be positive for consistency with 
downward-sloping demand. If wealthier patients are less price sensitive, this will be 
captured through ​​α​w​​ < 0.​

We assume that the terminal payoff ​​u​T​​​ is a function of the patient’s cumulative 
payments for treatment. Children born due to treatment are not included here because 
those benefits are included in ​U(k | ​k ̃ ​, τ)​. We add the variable ​​z​p​​​ as an indicator for 
whether a patient ever paid full price for a treatment cycle. We assume ​​u​T​​ = ​γ​p​​ ​z​p​​ ,​ 
which includes the normalization ​​u​T​​ = 0​ for patients who have never paid the full 
price of treatment.

At the initiation stage we specify that the individual-specific taste shock ​ν​ is dis-
tributed according to a continuous distribution ​F​(ν)​​ in the population of potential 
patients. The realizations of ​ν​ are i.i.d. Moreover, we assume ​ν​ is independent of 
infertility problems and other observables in our model, so ​F​(ν | τ, ​Z​ ​a​0​​​ 

D ​)​ = F​(ν)​.​ We 

assume ​ν ∼ Logistic​ so we have ​F​(ν)​ = Λ​(ν)​ = ​  exp​(ν)​ _______ 
1 + exp​(ν)​ ​ .​

Let ​φ​ represent a vector of all of the parameters except ​μ,​ ​ζ,​ and ​ρ​ , and define ​
θ  =  (ζ, φ, ρ)​. We estimate ​μ​ separately from ​θ​ so it is convenient for us to distin-
guish between the two.

VI.  Estimation

We estimate the model in three stages. We estimate the treatment technologies, ​​
f​e​​​ , ​​f​r​​​ , ​​f​X​​​ , and ​​f​k​​​ in the first stage. These models are easy to estimate using conven-
tional statistics packages. We use the parameter estimates from this estimation step 
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to characterize the stage-specific distributions of treatment outcomes for each com-
bination of fertility-related state variables and each possible stage-specific action 
a patient may take. We implicitly assume that we, as econometricians, have the 
same information on outcome probabilities as the patient and her doctor. Within this 
stage, we also estimate the distribution of ​​f​​Z​​ B​​​ (​Z​​ B​|​a​0​​)​ nonparametrically using fre-
quencies of ​​Z​​ B​​ realizations from within the population of women who initiate treat-
ment. In the second stage, we estimate the parameters in ​θ​ using data exclusively 
from the population of 587 patients who are observed within the clinic. In the final 
stage, we estimate ​μ​(​z​r​​)​​ using our estimates of ​E​[​​ 

_
 W ​​s, 1​​ (​Z​​a​0​​​​) | ​Z​ ​a​0​​​ 

D ​]​​ together with the 
market-level data.

A. Within-Clinic Choices

Given the estimated treatment technologies, a guess at the value of the struc-
tural parameters in (​ζ, φ​), and the distributional assumptions on ​ε,​ we are able to 
calculate ​​​ 

_
 W ​​y, j​​ (​Z​a​​ , τ ; ζ, φ)​ and ​E​[​W​j​​ (​Z​a​​, τ ; ζ, φ)]​​ for each ​y​ and ​j​ at every ​​Z​a​​​. We 

perform this calculation by backward recursion separately for each type ​τ​. For each 
potential state that might be reached when the patient is age ​​a​​ max​​ , we use ​(ζ, φ)​ to 
compute the terminal payoff, the values of ​​​ 

_
 W ​​y, j​​ (​Z​​a​​ max​​​, τ ; ζ, φ)​ working backward 

through treatment stages, and the logit inclusive value ​E​[​W​j​​ (​Z​​a​​ max​​​ , τ ; ζ, φ)]​​ for each 
stage. We then move to age ​​a​​ max​ − 1​ and use the ​​a​​ max​​ expected utility values while 
constructing ​​​ 

_
 W ​​y, j​​ (​Z​​a​​ max​−1​​, τ ; ζ, φ)​ and ​E​[​W​j​​ (​Z​​a​​ max​−1​​, τ ; ζ, φ)]​​. The procedure con-

tinues back to age ​​a​​ min​.​
Let ​​d​y, j, a, i​​  ∈  {0, 1}​ represent patient ​i​’s binary choice whether to take action ​y​ 

in stage ​j​ while at age ​a​. We write ​​d​i​​​ as the patient’s complete history of choices at 
the clinic. We use the calculated values of ​​​ 

_
 W ​​y, j​​ ( ​Z​a​​ , τ ; ζ, φ)​ for all ​​Z​a​​​ and ​τ​ to com-

pute choice probabilities for each observed decision in our data. Conditional on a 
patient’s type ​τ​ , calculating this probability is a straightforward task due to the i.i.d. 
extreme value assumption for the ​ε​ terms. For example, conditional on a patient 
reaching a Stage 2 decision over whether to continue (​c​) or cancel (​nc​) the current 
treatment cycle, her probability of continuing is

(11)	​ Pr(​d​c, 2, a, i​​ = 1| ​Z​a​​ , τ ; ζ, φ)  = ​ 
exp  [​​ 

_
 W ​​c, 2​​ (​Z​a​​ , τ ; ζ, φ)]

   _________________________________    
exp  [​​ 

_
 W ​​c, 2​​ (​Z​a​​ , τ ; ζ, φ)  + ​​ 

_
 W ​​nc, 2​​ (​Z​a​​ , τ ; ζ, φ)]

 ​​.

The values of ​​​ 
_

 W ​​c, 2​​ (​Z​a​​ , τ ; ζ, φ)​ and ​​​ 
_

 W ​​nc, 2​​ (​Z​a​​ , τ ; ζ, φ)​ are relatively simple 
functions of the estimated treatment technology ​​​  f​​r​​​ , price and its disutility parameter, 
and the calculated values of ​E​[​W​3​​ (r, ​Z​a​​ , ​ε​3, a​​ )]​​ and ​E​[​W​1​​ ( ​Z​a+1​​ , ​ε​1, a+1​​ )]​.​ We calcu-
late a probability like this one for each observed decision by each patient, including 
the implicit choices to delay further treatment attempts which occur during periods 
when the patient does not appear in the data despite starting treatment during some 
earlier period.

A patient’s permanent unobserved type, ​τ​ , affects every period and stage of her 
decision problem. Let ​Pr (​d​y, j, a, i​​ = 1; ​Z​a​​ , τ, ζ, φ)​ represent the predicted probability 
that patient ​i​ takes the observed action ​​d​y, j, a, i​​​ if she has type ​τ.​ The patient is observed 
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starting in period ​​t​i, 0​​​ and ending in ​​T​i​​​. Conditional on ​ζ​ and ​φ​ , the type-specific joint 
probability of observing patient ​i​’s sequence of choices is

	​ ​L​i​​ ( ​d​i​​ ; τ, ζ, φ) = ​ ∏ 
a=​a​i, 0​​

​ 
​T​i​​
 ​​ ​  ∏ 

j=1
​ 

4
  ​​ ​ ∏ 

y=1
​ 

​Y​j​​
 ​​ Pr ​( ​d​y, j, a, i​​ = 1; ​Z​a​​ , τ, ζ, φ)​​ ​d​y, j, a, i​​​ .​

With ​i​’s true type ​τ​ unobserved, the likelihood of observing her choices requires 
integration over ​τ​ , which is simply

	​ ​L​i​​ (​d​i​​ ; θ) = ​∑ 
τ
​ 
 
 ​​ ​ L​i​​ ( ​d​i​​; τ, ζ, φ) ​f​τ​​ (τ | ​Z​i, ​a​0​​​​ , I = 1, ρ).​

The log-likelihood of observing the choices of all patients in the clinic data is

	​ (θ) = ​∑ 
i
​ ​​ log  [ ​L​i​​ ( ​d​i​​ ; θ)] .​

We estimate ​θ​ by maximizing the value of ​(θ)​. We compute standard errors 
following the “outer product of the score” method for ​θ​ only. In computing standard 
errors we do not account for potential sampling error in our first-stage estimates.

In this second stage, the key model parameters recovered by the maximum like-
lihood procedure are the “price coefficient” ​​(​α​0​​)​​ and the nonparametric utility from 
children, given by ​​u​k​​​ for ​k = 1, 2, 3​. Identification of ​​α​0​​​ comes from various features 
of the clinic data. Specifically, it primarily draws on the following three sources of 
variation. First, since every patient that we observe at the clinic started at least one 
cycle, cross-sectional differences in insurance coverage during the first cycle provide 
identifying variation through different cancellation decisions. Greater price sensi-
tivity induces patients facing higher prices (due to insurance variation) to be more 
selective in their decision to continue on to the second stage—the most expensive 
one—involving egg retrieval. Second, while all clinic patients started at least one 
cycle, uninsured patients are (all else equal) less likely to return for another attempt 
after an initial failure. Again, the greater the price sensitivity measured by ​​α​0​​​ , the 
greater the observed differential return rate of uninsured versus insured patients. 
Third, additional variation comes from the observed behavior of the subsample of 
initially-insured patients as they approach the exhaustion of their covered cycles, 
relative to their behavior in earlier cycles. The greater the price sensitivity, the greater 
the tendency of insured patients to take actions that either preserve the last remaining 
insured cycles (by canceling more often) or make sure that the cycle succeeds (by 
increasing the number of embryos transferred). Identification of ​​α​w​​​ comes from con-
trasting these arguments in subsamples of low versus high wealth patients.

The identification of the ​​u​k​​​ values can be obtained with the embryo-transfer 
choice data under our assumption that patients know the probabilities of different 
birth outcomes for each potential embryo choice. Through her embryo-transfer 
choice, the patient essentially chooses among different potential lotteries over birth 
outcomes ​k​. For example, if patients strongly dislike triplet outcomes (i.e. they have 
a very negative value for ​​u​3​​​), then they will avoid embryo choices that are more 
likely to produce triplets. While the identification of the ​​u​k​​​s does not require varia-
tion in ASRM guidelines, which changed in the middle of our sample period (2004), 
such variation is also helpful for identification. Comparing the transfer behavior of 
patients with similar characteristics facing different recommended choice sets helps 
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identify preferences for birth outcomes as well as the penalty parameter ​​η​0​​.​ Of par-
ticular value are data on how similar patients behave when guidelines change with 
respect to single embryo transfers.

B. Treatment Initiation

We estimate the initiation decision in a third step, taking the within-clinic esti-
mates from the second step ​​θ ˆ ​ = (​ζ ˆ ​, ​ρ ˆ ​, ​φ ˆ ​)​ as given. Under our assumptions about 
initiation, we may write

(12)	​ Pr​(I = 1| ​Z​ ​a​0​​​ 
D ​ , τ, φ, ζ, ​g​E​​ , μ)​ = Λ​(W​(​Z​ ​a​0​​​ 

D ​ , τ, ​g​E​​ , φ, ζ)​ − μ​(​z​r​​)​)​,​

where the variable ​I​ indicates whether a patient with characteristics ​​Z​ ​a​0​​​ 
D ​​ started treat-

ment at age ​​a​0​​ .​ We integrate over observed and unobserved potential patient charac-
teristics to compute the model ​θ​ predicted rates at which the clinic’s potential patients 
of both races actually become patients, ​​​   s​​​ init​​(μ​(​z​r​​)​; ​g​E​​ , ​θ ˆ ​)​​. These race-specific distri-
butions,  ​​f​​Z​​ D​|​z​r​​​​ (​Z​ ​a​0​​​ 

D ​)​ for observed characteristics and ​​f​τ |​z​r​​​​ (τ | ​Z​ ​a​0​​​ 
D ​)​ for unobserved het-

erogeneity, will in general be different in the full potential patient pool versus among 
patients who choose to initiate treatment. We estimate the parameters ​μ​(​z​r​​)​​ by solving

	​​​    s​​​ init​​(μ​(​z​r​​)​; ​g​E​​ , ​  θ​)​ = ​s​​ init​​(​z​r​​)​​,

for each race ​​z​r​​​ under the empirical policy setting, ​​g​E​​​. Here, ​​s​​ init​​(​z​r​​)​​ is the race-spe-
cific, empirical initiation share that we construct from the count of actual patients 
given ​​z​r​​​ and our estimate of the size of the potential patient pool with race ​​z​r​​​, and ​​​s ˆ ​​​ init​​ 
is the initiation share predicted by the model for a given value of ​μ(​z​r​​)​. We estimate ​
μ​ for each race by finding the value that makes the model-predicted race-specific 
initiation share ​​​s ˆ ​​​ init​​ match the observed share, ​​s​​ init​​. Note that under alternative poli-
cies, ​W​(​Z​ ​a​0​​​ 

D ​ , τ, g, φ, ζ)​​ will change but ​μ​(​z​r​​)​​ remains fixed.
We approach the distributions ​​f​τ |​z​r​​​​ (τ | ​Z​ ​a​0​​​ 

D ​ )​ and ​​f​​Z​​ D​|​z​r​​​​ (​Z​ ​a​0​​​ 
D ​ )​ using different strat-

egies. In Appendix A we show that our assumptions on: (i) the distribution of 
unobserved types conditional on treatment initiation, ​​f​τ​​​(τ | ​Z​ ​a​0​​​ 

D ​ , ​I​i​​ = 1, ρ)​;​ and 
(ii) the initiation decision, are sufficient to back-out the unconditional (on initiation) 
race-specific distributions ​​f​τ |​z​r​​​​ (τ | ​Z​ ​a​0​​​ 

D ​ ).​ We write the incidence of ​τ = 2​ within-clinic 
as ​Λ([1, ​Z​ ​a​0​​​ 

D ​ ] ρ)​ , and ​Λ​(W​(​Z​ ​a​0​​​ 
D ​ , τ, ​g​E​​ , φ)​ − μ​(​z​r​​)​)​​ provides the race-specific prob-

ability of initiation for ​τ = 1, 2.​ In Appendix B we describe our approach to con-
structing ​​f​​Z​​ D​​​ (​Z​ ​a​0​​​ 

D ​ )​ using market data.
The estimates for ​​f​τ |​z​r​​​​​(τ | ​Z​ ​a​0​​​ 

D ​)​​ and ​​f​​Z​​ D​|​z​r​​​​​(​Z​ ​a​0​​​ 
D ​)​​ allow us to 

derive ​​s​​ init​​(θ, μ​(​z​r​​)​, ​g​E​​)​,​ the model-predicted fraction of potential patients of race ​​z​r​​​ 
who actually become patients. To obtain ​​s​​ init​​(μ​(​z​r​​)​; ​g​E​​ , θ)​,​ we integrate the initiation 
probability ​Pr (I  =  1​ | ​​Z​ ​a​0​​​ 

D ​ , θ, τ, μ​(​z​r​​)​)​ over the race-specific distribution of ​​Z​ ​a​0​​​ 
D ​​ and ​

τ​ among potential patients,

	​​​ s ˆ ​​​ init​​(μ​(​z​r​​)​; ​g​E​​ , ​θ ˆ ​)​  =  Pr​(I = 1|​θ ˆ ​, μ​(​z​r​​)​, ​g​E​​)​​

	​ = ​ ∑ 
​Z​ ​a​0​​​ 

D ​
​ ​​​[​∑ 

τ
​ ​​ Λ​(W​(​Z​ ​a​0​​​ 

D ​ , τ, ​g​E​​ , ​φ ˆ ​, ​ζ ˆ ​)​ − μ​(​z​r​​)​)​ ​f​τ|​z​r​​​​​(τ |​Z​ ​a​0​​​ 
D ​ , μ, ​θ ˆ ​)​]​ ​f​​Z​​ D​|​z​r​​​​​(​Z​ ​a​0​​​ 

D ​)​​.
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We use a bootstrap procedure based on the sampling distribution of ​​θ ˆ ​,​ to construct 
a confidence interval on ​​μ ˆ ​​ for each race. In particular, we draw 400 times from ​​θ ˆ ​​’s 
distribution, and for each draw we calculate the values of ​μ​ that equate ​​s​​ init​​ and ​​​   s​​​ init​​ 
for each race. We then sort the individual estimates of ​μ​ and use the 2.5th and 97.5​
th percentile values as the 95 percent confidence interval. The confidence interval 
on ​μ​ is not interesting in its own right, but it plays a critical role in describing the 
precision of predicted treatment-initiation decisions, which we discuss below.

VII.  Results

A. Technology Estimates

In this subsection, we discuss our estimates of the four treatment stages’ tech-
nologies. These technologies are dependent on a patient’s characteristics, and a 
patient’s knowledge of them is a crucial part of how she solves her personal dynamic 
optimization problem. Rather than providing parameter estimates for each treatment 
technology, we use a collection of figures to discuss the role each technology plays 
in the choice process. One of our overall goals is to emphasize the importance of 
allowing forward-looking dynamic behavior at each treatment stage.

During the first treatment stage, the patient decides whether to start or delay an 
IVF cycle. She is aware of her full state vector, ​Z​ , which includes her AFC score, ​​
z​afc​​​. At this point in the decision process, she considers her probable Peak E2 score 
(​e​), which will be revealed in Stage 2 if she starts treatment. In Figure 2 we display 
(estimated) probability distributions over ​e​ for two AFC score categories. The figure 
shows that having an AFC score below 5 substantially shifts to the left the distribu-
tion of ​e​ that the patient can expect to realize at the beginning of Stage 2.

The patient cares about her value of ​e​ because it affects outcomes in later stages. 
In Figure 3 we show that the realized ​e​ influences the distribution of the number 
of eggs that will be successfully retrieved (​r​) in Stage 3. Indeed, if ​e​ is low (e.g., 
in the 500–1,000 range) the mode of the distribution of eggs is 5–10 whereas if ​e​ 
is relatively high (2,000–2,500) the mode of the distribution of eggs is 11–20 and 
the probability of a low egg count (1–4) is almost 0. This strong difference in ​r​ 
outcomes at different values of ​e​ justifies our treatment of ​e​ as a within-period state 
variable that is critical to continuation/cancellation decisions in Stage 2.

In treatment Stage 3, a patient chooses her fertilization method (​m​). This choice, 
interacted with the patient’s state variables, influences the distribution of available 
embryos (​X​) in Stage 4. In Figure 4 we display the distributions of ​X​ with (​​m​2​​​) and 
without (​​m​1​​​) ICSI for patients whose partners have male-factor infertility. The fig-
ure shows that the more technologically advanced fertilization method (ICSI) shifts 
the distribution to the right, increasing the probability of having four or more viable 
embryos and reducing the probability of a small embryo count.

Once the patient has realized her value of ​X​ , she chooses the number of embryos  
(​x​) to transfer back into the uterus subject to ​x  ≤  X​. In Figure 5 we display evi-
dence on how ​x​ affects the distribution of births (​k​). Transferring 3 embryos instead 
of 2 reduces the chance of no birth from about 57 percent to 53 percent, but the prob-
abilities of twins and triplets increase. It is important to notice, however, that the 
probability of having no live births is fairly high regardless of whether two or three 
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embryos are transferred. Finally, in Figure 6 we explore the effects of age. We focus 
on patients who transfer ​x = 3​ embryos in Stage 4. As expected, the distribution for 
older (age > 35) women shifts to the left, noticeably increasing the odds of no live 
birth.

B. Utility Parameters

Taking as inputs the technology parameters described above, we estimate the 
model’s structural taste parameters. In Table 4 we display our estimates of ​U(k | ​k ̃ ​, τ)​ , ​
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Figure 2. Distribution of Peak E2 Outcomes by AFC

Figure 3. Distribution of Retrieved Egg Count by Peak E2
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α​ , ​δ​ , ​γ,​ and ​η.​ Our estimates of ​​u​1​​ ,​ ​​u​2​​ ,​ and ​​u​3​​​ represent payoffs from different 
birth outcomes to patients with ​τ = 1​ and no prior children. These estimates show 
that patients receive a positive payoff from a singleton or twin birth, with the latter 
valued slightly more. Triplet births, by contrast, have a negative utility payoff for 
patients. The estimate of ​κ​ indicates that patients with one or two prior children have 
their utility from births shifted downward substantially. For example, for a patient 
with ​​k ̃ ​ > 0​ and ​τ = 1​ , the estimated ​κ​ implies that the patient would prefer no 
additional children. The taste shifter ​ζ​ associated with type 2, however, is sufficient 
to increase the utility from additional births to be positive for patients with ​​k ̃ ​ > 0.​

Table 4’s results indicate that the baseline price disutility is significantly differ-
ent from zero for all patients, and this disutility is smaller for high-wealth patients. 
We recover a significantly negative estimate for the start/delay parameter ​δ​ , which 
plays a large role in determining whether a patient returns for additional treatment 
cycles after her first. Our estimate of the parameter ​γ,​ for a patient’s terminal payoff ​​
u​T​​ ,​ shows no significant difference between the utility of patients who have paid 
out-of-pocket for a treatment and those who have not. The final utility parameter on 
Table 4 is ​​η​0​​​ , the utility shifter from selecting an ​x​ outside of ASRM embryo transfer 
guidelines. We recover a negative value for this parameter, indicating a penalty for 
deviating from the guidelines.

Table 5 reports results on the distribution of ​τ​ within the treated population. 
We estimate that about half of the patient population has type ​τ = 2​ given their ​Z​ 
values. To interpret the individual ​ρ​ parameters, consider the case of patient wealth. 
The negative coefficient (​​ρ​2​​​) on the wealth measure indicates that a high-wealth 
person selected from the treated population is less likely to have type ​τ = 2​ than a 
treated low-wealth person. This accords with the intuition that treatment expenses 
are most likely to discourage low-wealth individuals with relatively small payoffs 
from having children through IVF.
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Finally, in the third estimation step we recover ​​μ ˆ ​(1) = − 0.34​ for African 
Americans and ​​μ ˆ ​(0) = − 2.17​ for all other potential patients​.​32 These values of ​μ​ 
ensure that the initiation model generates treatment initiation decisions such that, 
as estimated from our data, 30 percent of all potential clinic patients (7.2 percent 

32 The 95 percent confidence interval for ​​μ ˆ ​(1)​ is ​[−0.85, 0.50]​ and for ​​μ ˆ ​(0)​ is ​[−2.57,  −1.57]​ .
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of African Americans and 34.6 percent of others) indeed choose to become clinic 
patients and undergo at least one IVF cycle.

C. Model Fit

We conduct two procedures to evaluate model fit. First, we compare the estimated 
model’s predicted choice probabilities to those we observe in the data. This provides 
a straightforward way to examine choice probabilities at the four stages of IVF 
treatment; all predictions match the data fairly well. Start/delay decisions, which 
are observed most frequently in the data (and are assisted by the intercept term ​δ​) 

Table 4—Utility Parameter Estimates

Utility of 1 birth (u1) 5.143
(0.928)

Utility of 2 births (u2) 5.866
(1.682)

Utility of 3 births (u3) −14.095
(4.411)

Utility shift when ​​   k ​​ > 0 (κ) −11.868
(0.959)

Preference shifter ζ 9.768
(0.865)

Price sensitivity constant (α0) 0.312
(0.070)

Price sensitivity × wealth (αw) −0.127
(0.066)

Terminal payoff × Prev. payment (γ) 0.228
(0.631)

Utility shift from beginning treatment (δ) −4.909
(0.098)

Penalty for violating ASRM embryo guidelines (η0) −3.036
(0.194)

Note: Standard errors are in parentheses.

Table 5—Utility-Type Distribution Parameter Estimates

Constant (ρ0) −1.269
(0.552)

Age (ρ1) 0.041
(0.013)

Wealth (ρ2) −0.864
(0.457)

Insurance (ρ3) −0.017

(0.367)
ASRM regime (ρ4) 0.469

(0.340)
Race (ρ5) −1.032

(0.879)

Note: Standard errors are in parentheses.
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have the tightest fit. In all periods after initiation, patients in the data choose “start” 
in 3.6 percent of all opportunities, while our estimated model predicts that patients 
choose “start” with frequency of 4.5 percent. Stage 2 and 3 predicted decisions also 
follow the data fairly closely. Some differences are to be expected, however, because 
these stages’ fits depend on overall ​​W​j​​​ values rather than individual parameters. We 
observe cancellation (Stage 2) and ICSI (Stage 3) frequencies of 14.4 percent and 
39.7 percent, respectively, and our model provides choice probabilities of 13.5 per-
cent and 54.1 percent. Figure 7 provides a comparison of distributions across Stage 
4 choices. The estimated model succeeds in matching ​x = 2​ as the most common 
choice in Stage 4, followed by ​x = 3​. Transfers of 1 and 4 embryos are rare in the 
data (and model) because of the utility penalty for deviating from ASRM guidelines 
and the negative payoff from a triplet birth (in the case of ​x = 4​).33

In a second set of exercises, we evaluate the predicted choice and outcome histo-
ries for the population of ​587​ observed patients. These histories begin with the same 
state variables (​Z​) as the patients in the data, but then random draws on medical out-
comes and taste shocks determine choices and outcomes over time. For each patient 
we repeat the process ten times, allowing for the realization of different taste shocks 
and stochastic medical outcomes. We average over patients and their individual sim-
ulated histories in computing the statistics we report below.

We focus on two critical measures of effectiveness and efficiency of IVF treat-
ment. First we ask, what proportion of patients eventually succeed in delivering 
at least one live birth through IVF, regardless of the number of attempted cycles 
required to do so? We find that 60 percent of our simulated patient histories include 

33 We have explored whether choices in a patient’s second IVF cycle or beyond can be explained by outcomes 
during Stage 1–3 of her first IVF cycle. These variables have no significant impact on later-cycle choices. We view 
this result as evidence to support our assumption that the patient does not respond to health variables other than 
those in ​​Z​​ B​​ or revealed during the current cycle. 
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a birth, which is reasonably close to the empirical value of 53 percent reported on 
Table 2. Second, we investigate how many cycles an individual patient receives at 
the clinic. In our simulation, 49 percent of patients are observed taking a single 
cycle, 33 percent undergo two cycles, and 18 percent receive three or more cycles. 
These results compare well to the data, in which we see 47 percent, 28 percent, 
and 25 percent of patients receive one, two, or three or more cycles, respectively. 
Patients’ responses to price variation, which come through differences in insurance 
status, also match well between the data and model. In the data, insured patients 
take an average of 1.97 cycles during their full treatment histories, while uninsured 
patients average 1.50 cycles. Our simulated patient histories contain an average of 
1.99 cycles for insured patients and 1.56 for uninsured. Both the data and simulated 
histories contain only small differences in embryos transferred by insurance status; 
we return to the relationship between insurance and embryos below.

VIII.  Counterfactual Experiments

We use the estimated model to consider a set of counterfactual policy experi-
ments which analyze potential IVF patients’ responses to changes in their deci-
sion environment (​g​). The policies vary in how they emphasize or highlight the key 
incentives and trade-offs in IVF. Three themes are central to all policies. First, with 
forward-looking patients, the full sequence of treatment choices can be affected by 
prices and restrictions at any point on the treatment path. This is especially import-
ant for prices or opportunities that might change several periods into the future, like 
the exhaustion of covered cycles under treatment-based insurance. Second, patients 
have a general incentive to be aggressive in treatment because they do not face the 
full costs of high-order births. Third, patients may have an incentive to take aggres-
sive treatment in the current period in order to reduce the probability of paying for 
treatment in the future.

Extensive-margin choices are crucial for this analysis, so we employ the full at 
risk population of ​​N​​ inf​ = 2,781​ potential patients described above. While we abstract 
away from the impact of IVF policy on women’s life-cycle choices over education, 
career, age at marriage, and age at first birth, these channels could affect the size 
and composition of the IVF patient pool.34 The ​​N​​ inf​​ potential patients represent the 
portion of St. Louis market served by the clinic we study. While we do not discuss 
other clinics in the market, in our counterfactuals we implicitly assume that all clin-
ics are subject to the same policies. When considering absolute magnitudes below 
(e.g., numbers of births, dollar values) these figures can be multiplied by about three 
to understand the impact of a policy on outcomes in the St. Louis market as a whole. 
In 2012, St. Louis clinics performed about 1 percent of all cycles in US clinics.

For each potential patient, we draw age, wealth, insurance, race, and ASRM 
regime values that are consistent with the empirical distributions of these values. 
Along with the distribution of biological state variables (not yet revealed to poten-
tial patients), we use the estimated model to construct ​W​(​Z​ ​a​0​​​ 

D ​ , τ, g, ​  φ​, ​  ζ​)​​ for each 

34 Buckles (2005), Abramowitz (2014), and Gershoni and Low (2015) consider the impact of IVF policy on 
life-cycle choices. If these choices change with the counterfactual policies that we consider below, then our esti-
mates of welfare impacts would change as well. We defer this issue to future research. 
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simulated woman. The values of ​W​(​Z​ ​a​0​​​ 
D ​ , τ, g, ​  φ​, ​  ζ​)​​ differ across policy experiments. 

We then allow potential patients to elect whether to begin treatment by compar-
ing ​W​(​Z​ ​a​0​​​ 

D ​ , τ, g, ​  φ​, ​  ζ​)​​ to the population-wide utility parameters ​​  μ​( ​z​r​​ )​ and a sim-
ulated value for the potential patient’s taste shock ​ν.​ For all potential patients, we 
simulate initiation choices and decision histories in the same way described above 
for evaluating model fit, including repeating the process ten times for each potential 
patient in ​​N​​ inf​​. Potential patients who do not start treatment at ​​a​0​​​ exit the model 
forever.

We assume that the ​​N​​ inf​​ simulated potential patients arrive at the fertility deci-
sion uniformly over the 2001–2007 window during which the 587 observed clinic 
patients began treatment. As in the data used for estimation, the simulated patients’ 
histories are followed from their initiation decision through 2009. To maintain con-
sistency with our empirical model, we focus on counterfactual outcomes during 
2001–2009, and we continue to refer to this window as the “sample period.”

Across all experiments we hold fixed the clinic’s prices. While substantial changes 
in the policy environment may prompt the clinic to adjust its prices, we do not offer 
a model of how new equilibrium prices would be set. The clinic is part of a large 
medical school’s teaching hospital, so it is not clear what objective function is used 
to set prices. We note that during the full sample period the clinic elected to keep its 
prices fixed at the same level. In fact, the typical IVF cycle price in the United States 
has remained approximately unchanged between the mid-1990s and the present, 
despite a substantial increase in the number of treated patients.

We report our main results in Tables 6–7 and Figures 8–9. The tables contain both 
point estimates of counterfactual outcomes and 95 percent confidence intervals cal-
culated with the same bootstrap procedure described above.35 The figures focus on 
embryo transfer choices and birth outcomes under selected policies in which these 
choices and outcomes are particularly interesting. Because the figures and tables 
contain results from all experiments collected together, it is worthwhile to intro-
duce them briefly and define terms. First, we calculate histories for ​​N​​ inf​​ potential 
patients under the observed choice environment; we refer to this as the “empirical 
baseline” and index it as ​​g​E​​​. We then consider a variety of insurance policies that 
provide patients with a specified number of treatments. We begin by simulating the 
market when no patients have treatment insurance (no insurance, ​​g​N​​​). We contrast 
this with a policy that provides Illinois-style insurance for four IVF cycles to all 
potential patients, without exceptions, in both states; this is “universal insurance 
for treatment” and is indexed as ​​g​IT​​​. We augment ​​g​IT​​​ with three policies designed 
to reduce embryo transfers. An “IT + embryo cap” (​​g​C​​​) policy limits all patients 
to transferring a single embryo. The policy “IT + actuarially fair top-up prices” 
(​​g​AT​​​) allows patients to receive multiple embryos, but they bear the entire additional 
expected birth costs from multiple-embryo transfers. In the final experiment with 
treatment-focused insurance, we illustrate the implications of reduced but positive 
top-up prices (“IT + moderate top-up prices,” ​​g​MT​​​). We contrast treatment-focused 

35 We draw 400 times from the sampling distribution of ​θ​ , and then estimate a new value of ​μ​ for each draw. We 
use each pair ​(θ, μ)​ to compute the full set of patient histories under each counterfactual policy described below. 
We construct confidence intervals using the 2.5th and 97.5th percentile of each outcome (across (​θ, μ​) pairs) within 
a policy setting. 
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insurance with outcome-focused insurance in two final policy simulations. First, we 
allow patients to receive as many insured treatments as they choose, provided they 
have one or fewer children when each cycle begins (“universal insurance for out-
comes,” ​​g​IO​​​). Second, we demonstrate the impact of dynamics and forward-looking 
behavior by simulating the impact of an outcome-based insurance policy in which 

Table 6—Initiations, Cycles, and Outcomes across Policy Settings

Policy setting (g) Share initiating N cycles if initiate Share with birth N births N infants

Empirical baseline (E) 0.299 1.348 0.159 456.2 636.4
(0.295, 0.305) (1.280, 1.445) (0.148, 0.173) (422.1, 496.8) (584.6, 691.1)

Panel A. Insured treatment policies
No insurance (N) 0.242 1.277 0.127 360.7 505.2

(0.227, 0.258) (1.204, 1.396) (0.113, 0.145) (321.3, 413.3) (446.0, 576.4)
Universal insurance 0.577 1.426 0.315 902 1,245.2
  for treatment (IT) (0.512, 0.625) (1.365, 1.507) (0.281, 0.347) (808.0, 997.5) (1,114.0, 1,373.0)
IT + embryo cap (C) 0.287 1.238 0.077 217.9 247.4

(0.226, 0.342) (1.127, 1.357) (0.061, 0.093) (172.7, 263.4) (197.2, 300.6)
IT + actuarially fair top-up 0.323 1.271 0.113 320.5 397.7
  prices (AT) (0.280, 0.373) (1.181, 1.396) (0.100, 0.130) (282.3, 371.6) (349.0, 476.7)
IT + moderate top-up 0.449 1.356 0.206 586.7 778.8
  prices (MT) (0.407, 0.485) (1.297, 1.461) (0.183, 0.231) (523.6, 656.1) (688.6, 881.5)

Panel B. Insured outcome policies

Universal insurance 0.576 1.412 0.311 883.2 1,210.8
  for outcomes (IO) (0.511, 0.625) (1.353, 1.494) (0.277, 0.343) (788.9, 980.1) (1081.9, 1,336.5)
Age-adjusted insurance 0.484 1.4 0.278 787.6 1,087.9
  for outcomes (IA) (0.442, 0.517) (1.337, 1.486) (0.251, 0.307) (712.6, 869.7) (979.2, 1,194.9)

Note: 95 percent confidence intervals are in parentheses.

Table 7—Surplus and Costs across Policy Settings

Policy setting (g)
Total surplus in risk 

population ($M)

Total IVF 
insurance 
cost ($M)

Total medical 
delivery cost ($M)

Medical cost 
per birth ($000)

Insurance + 
medical cost 

per birth ($000)

Empirical baseline (E) 10.3 3.6 31.4 68.9 76.9
(8.3, 13.7) (3.1, 4.0) (28.6, 33.9) (66.9, 69.5) (74.4, 77.7)

Panel A. Insured treatment policies
No insurance (N) 7.6 0 25.0 69.4 69.4

(5.6, 10.8) (0.0, 0.0) (21.8, 28.5) (67.0, 70.0) (67.0, 70.0)
Universal insurance 18.4 16.4 60.5 67.1 85.2
  for treatment (IT) (16.0, 22.4) (14.6, 18.0) (54.4, 66.8) (65.9, 68.2) (84.4, 86.2)
IT + embryo cap (C) 5.6 7.3 8.5 38.9 72.4

(4.4, 7.4) (5.7, 8.8) (6.8, 10.4) (38.8, 39.7) (71.8, 73.8)
IT + actuarially fair top-up 7.8 8.3 11.9 37.1 63.1
  prices (AT) (6.0, 11.4) (7.3, 9.7) (10.5, 13.8) (36.0, 38.4) (59.4, 66.2)
IT + moderate top-up 13.3 12.2 29.9 50.9 71.7
  prices (MT) (10.5, 17.9) (11.1, 13.7) (26.1, 34.3) (48.4, 52.7) (70.4, 72.7)

Panel B. Insured outcome policies
Universal insurance 18.5 16.2 58.3 66.1 84.4
  for outcomes (IO) (16.0, 22.6) (14.5, 18.0) (52.4, 64.4) (64.9, 67.2) (83.6, 85.4)
Age-adjusted insurance 15.7 12.0 52.7 66.9 82.1
  for outcomes (IA) (13.3, 19.6) (10.7, 13.3) (46.8, 57.5) (65.2, 67.7) (80.5, 82.8)

Note: 95 percent confidence intervals are in parentheses.
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Figure 9. Births Outcomes in Counterfactual Experiments
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MT = insurance plus “moderate” top-up prices.
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insurance benefits are reduced for older patients (“Age-adjusted insurance for out-
comes,” ​​g​IA​​​).

Before describing the individual policy experiments, we describe some of the 
outcomes that we calculate under the empirical distribution of insurance (​​g​E​​​). Under 
the observed prices and constraints, we find that 29.9 percent of potential patients 
elect to begin treatment. This initiation rate, combined with success probabilities 
within the clinic, results in 15.9 percent of women in ​​N​​ inf​​ achieving at least one 
birth during the sample period. About 53 percent of simulated patients who begin 
IVF achieve a birth at some point in the treatment history; this matches the observed 
rate in the actual patient population. On average across 10 simulated histories under ​​
g​E​​​ , the baseline simulations average ​456​ births for the 2,781 patients in ​​N​​ inf​;​ these 
births deliver 636 infants to the population, implying an average number of infants 
per birth of 1.4.

For each patient who begins treatment we calculate ​​Δ​i​​ = W​(​Z​ i, ​a​0​​​ 
D  ​ , ​τ​i​​ , g, ​φ ˆ ​, ​ζ ˆ ​)​ − 

(​μ ˆ ​​(​z​r​​)​ + ​ν​i​​ ),​ which is a measure of the net utility gain from initiating IVF above the 
outside option. Patients who elect to forgo treatment receive ​​Δ​i​​  =  0.​ We use ​​​α ˆ ​​i​​​ , our 
estimate of the disutility from payments for each patient ​i​ (which varies depending 
on ​i​’s wealth) to obtain a patient-specific dollar-valued surplus measure, ​C​S​i​​ (g ) = ​
Δ​i​​ /​α​i​​​. Across all potential patients in ​​N​​ inf​,​ including those who do not initiate treat-
ment, the total ​CS( ​g​E​​ )  =​ $10.3 million, or about $3,700 per person in the risk pop-
ulation (or $12,400 conditional on initiation).36 If insurers must pay the difference 
between insured patients’ prices and the full price, the empirical baseline requires 
a total of ​$3.6​ million in payments from insurers to the clinic. Finally, we calculate 
the total medical costs of all pregnancies and births that occur under ​​g​E​​​ , using the 
cost estimates from Lemos et al. (2013) discussed above.37 Using these figures, the 
total pregnancy- and delivery-related medical cost of the baseline is ​$31.4​ million, 
or $68,900 per birth. When insurance costs for treatment are included along with 
delivery costs, the average cost per birth is $76,872 (or $55,105 per child).

We use the simulated population to calculate price elasticities as well. Prices 
paid by insured and uninsured patients have different interpretations, so we calcu-
late changes separately with respect to each price. When out-of-pocket prices for 
uninsured patients rise by ​5 percent​ , we calculate that ​6.4 percent​ fewer uninsured 
patients initiate treatment, implying an elasticity of ​− 1.28​ at the extensive margin. 
The same price increase has a slightly larger impact on the total number of unin-
sured cycles, which falls by ​6.7 percent​ for an elasticity of ​− 1.33​. The elasticities 
values are different, in part, because patients who continue to initiate despite higher 
prices may choose to reduce their total numbers of cycles. We perform the same 
calculations with prices paid by insured patients (holding fixed uninsured prices), 
and we obtain elasticities that are smaller in magnitude. The impact of a 5 percent 

36 Policies that have increased insurance costs (e.g., from universal insurance) will eventually pass these costs 
on to consumers in the form of higher premiums, and this could reduce welfare. Two factors, however, may moder-
ate this welfare loss. First, the population of individuals purchasing health insurance policies is much larger that the 
risk population we focus on, so per-capita premium increases could be small. Second, insurance coverage of IVF 
would provide additional benefits to women who do not know whether they will join the risk pool. These issues are 
beyond the scope of our paper. 

37 We were unable to obtain actual cost data for individuals in our sample since deliveries may occur at any 
hospital chosen by the patient. Data from the National Inpatient Sample show that delivery costs in Missouri are 
similar to those nationwide, while Illinois is slightly above the national average. 
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increase in out-of-pocket expenses for insured patients results in ​1 percent​ fewer 
insured patients initiating and a total reduction of ​1.4 percent​ in insured cycles. 
While elasticities above ​− 1​ are inconsistent with profit maximization, the clinic 
may have different objectives than a traditional firm. These elasticities are compara-
ble to others from the health care literature (e.g., Manning et al. 1987).

A. Impact of Insured Treatment

In our first set of counterfactual policies, we consider the impact of a substantial 
expansion of insurance in the market. To establish a benchmark, we begin by sim-
ulating treatment choices and outcomes when no patients have insurance (​​g​N​​​). In 
this setting, we find that 24.2 percent of the at-risk population chooses to initiate 
IVF, and 12.7 percent of the at-risk population conclude treatment with one or more 
births. The availability of IVF generates $7.6M in surplus for patients, who initiate 
treatment only if expected surplus is positive. While there are no insurance costs 
of treatment in this setting, patients who become pregnant and give birth generate 
$25M in medical costs, which amount to $69,414 per birth.

When Illinois-style insurance is extended to all potential patients (​​g​IT​​​), the num-
ber of treated women and births increase substantially. We find that 57.7 percent 
of potential patients in the simulated risk pool initiate treatment, and 31.5 percent 
in this population experience a birth during the sample period.38 The presence of 
insurance has an impact on both initiation and the choice whether to continue treat-
ment after a failure. While patients without insurance (in ​​g​N​​​) take an average of 1.24 
cycles over their treatment histories, insured patients receive 1.43 IVF cycles on 
average. Despite a reduction in the price of treatment, the distribution of embryos 
transferred is very similar under ​​g​N​​​ and ​​g​IT​​​ (Figure 8). Likewise, the distribution 
of births (Figure 9), shows little difference between ​​g​N​​​ and ​​g​IT​​​. This suggests that 
the extension of insurance benefits has a minimal impact on the multiple birth rate, 
whether through patient selection or the incentives of patients who would have 
received treatment when paying full price. In our model, this is explained by the 
strong utility benefits that patients receive from twins, and the relatively low risk of 
triplets. Taken together, patients have little reason to reduce the aggressiveness of 
their embryo-transfer decisions.39

The patient surplus benefits of Illinois-style insurance are substantial, with total ​
CS( ​g​IT​​ )  =​ $18.4M, which is $10.8M greater than under ​​g​N​​​. To evaluate the full 
impact of ​​g​IT​​​ , however, we must account for additional costs due to insurance pay-
ments and medical delivery costs. As reported in Table 7, the insurance costs of ​​g​IT​​​ 
are substantial, at $16.4M. The difference between the changes in consumer surplus 
and insurance costs is to be expected considering the traditional medical-demand 

38 If, contrary to our assumptions, potential patients have some information about ​​Z​​ B​​ prior to initiating treat-
ment, we expect that this could affect the magnitudes of our policy predictions. For example, if prior information 
about ​​Z​​ B​​ implies that patients who select into treatment have better fertility characteristics than the average woman 
who experiences infertility, then policy changes which reduce IVF’s price would have a smaller impact than we pre-
dict. On the other hand, if patients choose how quickly to move from lower-tech infertility treatments to IVF, then 
a price-reducing policy change might result in relatively more new patients with favorable fertility characteristics. 

39 By contrast, Hamilton and McManus (2012) find that insurance mandates reduce embryo transfers. That 
result, however, is based on an earlier sample period (1995–2003) when IVF technology was more likely to fail and 
patients transferred an average of one additional embryo per treatment. 
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“moral hazard” incentive of patients to take insured treatment when their willing-
ness to pay is less than the price for uninsured patients. The expansion of insur-
ance coverage, therefore, must be defended through arguments about fairness or 
equal access. While all potential patients benefit from universal insurance, we find 
in supplemental analysis that increases in access and surplus are greater for patients 
from lower wealth areas (​​z​w​​ = 0​). Overall, insurance and delivery costs per birth 
are $85,213 with policy ​​g​IT​​​ , although the difference between this figure and the 
no-insurance value is almost entirely due to the introduction of insured treatment 
costs. Delivery costs per birth are largely unchanged because the distribution of 
birth outcomes is unchanged.

Embryo Caps.—We next explore the impact of restricting patients to transfer only 
a single embryo during treatment. We do this in the context of universal insurance 
so that our setting is close to the implementation of embryo caps as they have been 
introduced in practice, i.e., in countries with generous health insurance. To simulate 
the policy ​​g​C​​​ , we solve the model again at the estimated parameters but we impose 
the restriction ​x  ≤ 1​ instead of ​x  ≤  X​ in Stage 4 (the embryo transfer stage). We 
also remove the utility penalty for single-embryo transfers for circumstances when 
these conflict with ASRM guidelines. We then use the new policy functions together 
with the same history of ​ε​ and medical technology shocks to simulate counterfactual 
patient histories under the one-embryo cap.

The restriction on embryo transfers reduces the expected value of IVF for patients 
considering treatment. The share of ​​N​​ inf​​ who initiate is 28.7 percent, or about half 
the initiation rate with ​​g​IT​​​. The cap has a large mechanical effect on the distribution 
of embryos transferred (see Figure 8), which in turn yields a substantial shift in the 
distribution of births (Figure 9). As a consequence, the share of patients with births 
(​7.7 percent​) declines more steeply than the initiation rate. The estimated Stage 4 
function ​​f​k​​ (k | x, Z)​ implies a fairly high twin rate among single-embryo transfers 
at the clinic, so the number of delivered infants is 1.14 for every birth despite the 
single-embryo restriction.

Despite an initiation rate that is greater than that of ​​g​N​​ ,​ the embryo cap pol-
icy generates less consumer surplus ($5.6M) than the no-insurance scenario. Total 
insurance and delivery costs are substantially reduced in magnitude, to $7.3M and 
$8.4M respectively, but important differences exist between measures of costs per 
birth. Medical costs per birth fall by almost $30,000 relative to ​​g​N​​​ and ​​g​IT​​​ , down to 
$38,900, due to the reduction in the numbers of twins and triplets. Patients require 
more IVF cycles to achieve a birth, however, so insurance expenses along with med-
ical costs results in total per-birth costs equal to $72,400, which is greater than the 
average in ​​g​N​​​.

Top-Up Prices.—Patients receive substantial value from the opportunity to trans-
fer two or more embryos, which suggests that there may exist beneficial policies that 
allow patients to trade-off between the benefits and costs associated with transferring 
multiple embryos. The medical cost of multiple births are largely borne by insurers 
rather than the patients who choose treatment aggressiveness, which implies a tra-
ditional form of moral hazard (distinct from the demand-related version associated 
with ​​g​IT​​​) in which too much risky behavior occurs in equilibrium.
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We construct top-up prices that are paid when a patient transfers two or more 
embryos. Let ​​c​k​​​ be the average medical cost of a delivering ​k​ infants, and let ​​

_
 Z ​​ 

denote the state variable values for a median-age treated patient with no additional 
fertility problems. We construct an (approximately) actuarially fair top-up price for 
transferring ​x > 1​ embryos as

	​ ​p​x, 4​​  = ​  ∑ 
k>1

​​​ ( ​c​k​​ − ​c​1​​ )  ​[ ​f​k​​ (k | x, ​
_

 Z ​)  − ​f​k​​ (k | 1, ​
_

 Z ​)]​ .​

This expression acknowledges that there is some multiple birth risk for patients 
transferring a single embryo, ​​f​k​​ (k | 1, ​

_
 Z ​)​ , but patients do not pay for this risk as 

part of the top-up price. Additionally, by including the cost difference ​( ​c​k​​ − ​c​1​​ )​ we 
exclude the expense of a singleton infant. Given the values of ​​c​k​​​ provided above 
(roughly $27,000, $115,000, and $435,000 for singletons, twins, and triplets, 
respectively) and the probabilities in ​​f​k​​​ , the top-up price for two embryos is about 
$12,000, and three or four embryos each entail top-up prices of roughly $19,000.40 
In our simulations, when a patient chooses to pay ​​p​x, 4​​ > 0​ , we subtract this price 
from the summed medical costs of the full population’s treatment (as if the accumu-
lated top-up prices are saved in a fund to pay for medical expenses). In calculating 
patient utility from any ​x​ , we remove the utility penalty (​​η​0​​​) for any transfer outside 
of ASRM guidelines.

This top-up price policy (​​g​AT​​​) generates greater total consumer surplus ($7.8M) 
than ​​g​N​​​ or ​​g​C​​​ , which leads to an IVF initiation rate that is greater as well. In addi-
tion, despite positive insurance cost of $8.3M under ​​g​AT​​​ , the medical cost of births 
decreases by $13.1M relative to ​​g​N​​ .​ Together, these results imply that a policy of 
insured treatment for all patients, but with actuarially fair top-up prices, is wel-
fare-improving for both consumers and the insurance firms that pay for IVF and birth 
costs. Reduced total costs for insurers could lead to lower premiums for patients in a 
competitive insurance market. The policy ​​g​AT​​​ has a slightly lower share of potential 
patients with a birth than ​​g​N​​​ (11.3 percent versus 12.7 percent), but this is accom-
panied by a multiple-birth rate that declines substantially. The average number of 
infants per delivery is ​1.24​ under ​​g​AT​​​ , which is about halfway between the rates of ​​
g​N​​​ and ​​g​C​​​. The total cost per birth falls to $63,350 with ​​g​N​​​ , which is the lowest value 
of all policies we consider in this paper. While both ​​g​C​​​ and ​​g​AT​​​ have per-birth med-
ical costs of about $37,000, the greater per-treatment success rate of ​​g​AT​​​ drives total 
per-birth costs below those of ​​g​C​​​.

While ​​g​AT​​​ has several attractive properties relative to ​​g​N​​​ and ​​g​C​​​ , the actuarially 
fair top-up prices can lead some patients to pay total prices that are substantially 
greater than under ​​g​N​​​. It is possible to scale-down ​​g​AT​​​’s top-up prices to achieve a 
variety of policy objectives. For example, the top-up prices could be set so that total 
consumer surplus is equal to the empirical status quo, or they could be set so that 
total IVF and medical costs with top-up prices are equal to their level under ​​g​N​​​. We 
conclude our consideration of top-up prices with an additional example: prices that 

40 For example, a patient with ​Z = ​
_

 Z ​​ who transfers two embryos experiences increases in her twin and triplet 
risks by ​12​ and ​0.3​ percentage points, respectively. Each change in risk is multiplied by the corresponding differ-
ence in medical cost relative to a singleton birth. 
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prevent any patient from paying a greater price for an IVF cycle than she would 
under ​​g​N​​ .​ We scale down the actuarially fair prices (while keeping their propor-
tions fixed) so that patients pay $5,000 to transfer a second embryo and $8,000 for 
three or four embryos. These payments are on top of the insured treatment prices, 
which total $3,000 for a full cycle with ICSI. Under ​​g​N​​​ a patient who uses ICSI and 
receives four embryos also pays $11,000. This policy of “moderate” top-up prices ​​

(​g​MT​​)​​ leads to 85 percent more patients initiating IVF than under ​​g​N​​​ , and 62 percent 
more patients who ever experience a birth during the sample period. While total 
insurance plus medical costs are 68 percent greater with ​​g​MT​​​ relative to ​​g​N​​​ , the per-
birth medical plus insurance cost is only 3.3 percent greater.

B. Insuring Outcomes

To highlight the scope of potential IVF policies and the impact of dynamics 
in this procedure, we study two outcome-focused insurance policies. In policy ​​
g​IO​​​ , we again expand insurance to the full population, but now with unlimited 
attempts at IVF for patients with one or fewer children when beginning a treat-
ment cycle. In general, patients prefer an outcome-based policy that allows unlim-
ited tries relative to treatment-based policies like ​​g​IT​​​ that insure only a limited 
number of cycles. A dynamic model is needed to compare the welfare benefits 
of ​​g​IO​​​ and ​​g​IT​​​ , given their specific details. From the patient’s perspective at the 
beginning of treatment, the entire surplus difference depends on how insurance 
coverage changes after the first cycle. From a cost perspective, the key trade-offs 
are between delivery costs (which are large when twins and triplets occur) and 
treatment costs (which are large when many attempts are needed until success). 
Insured-outcome policies might lead to more attempts with less chance of twins 
and triplets because forward-looking patients can be more conservative in their 
embryo transfers. Insured-treatment policies may drive up delivery costs as for-
ward-looking patients try to succeed in the early (covered) attempts by being more 
aggressive in their treatments.

In the second outcome-focused policy we add age-based eligibility conditions, 
which are motivated by age-related fertility differences, as younger patients are typ-
ically more likely to succeed than older ones.41 Patients under ​​g​IA​​​ who begin a 
cycle younger than age 35 receive the full benefit of ​​g​IO​​​ , while patients with ages 
between 35 and 40 pay prices halfway between the uninsured price and the insured 
one. (This amounts to a discount of about 35 percent.) Patients age 40 and above 
are completely excluded from insurance. This policy has an impact on dynamic 
decision-making because it becomes less generous when the patient crosses certain 
age thresholds, therefore encouraging patients to try to succeed before aging-out of 
the policy benefits. If patients accelerate their treatment attempts, the age-dependent 
policy may generate some cost savings as the attempts are conducted when the 
patient is younger and more fertile. Therefore, success is more likely to be achieved 

41 There are some similarities between our age-related policy experiment and the dynamic public finance lit-
erature’s treatment of age-dependent tax policies (e.g., Weinzierl 2011). Just as productivity differences by age 
imply that age-related tax policies can be optimal, age-related fertility differences suggest opportunities for policy 
variation along this dimension. 
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in fewer attempts. On the other hand, incentivizing patients to succeed before they 
cross the age-based eligibility thresholds could increase costs if patients become 
more aggressive. In addition, patients who speed up treatment experience a util-
ity penalty because they may deviate from their preferred treatment spacing across 
cycles.

While policies tied to cumulative patient outcomes and ages may place some 
record-keeping demands on insurers (especially if an individual changes providers), 
this is no more complicated than current Illinois policy, which requires tracking the 
cumulative number of cycles.

The treatment-focused policy ​​g​IT​​​ and the outcome-focused policy ​​g​IO​​​ have vir-
tually identical effects on patient initiation, the probability of one or more births 
per patient, patient surplus, and insurance costs. The strong similarity between the 
two policies occurs because very few patients under ​​g​IO​​​ choose to take five or more 
cycles. In the eyes of most patients, the two policies are similarly generous. This 
outcome was not guaranteed, and indeed if ​​g​IT​​​ covers fewer than four cycles this 
treatment-based policy provides significantly less patient surplus than ​​g​IO​​​.

As expected, the policy with age-adjusted benefits, ​​g​IA​​​ , has lower overall benefit 
to patients. Although older patients are most sharply affected by these limits, the 
differences in surplus and costs between ​​g​IO​​​ and ​​g​IA​​​ are not especially large. The 
older patients who would start treatment under ​​g​IO​​​ but not ​​g​IA​​​ are also the patients 
most likely to fail, so the share of patients with a birth falls by about 16 percent 
while insurance costs for treatment decline by 26 percent. Overall, treatment and 
birth costs fall by more than patient surplus.

Comparisons across patient ages offer the best opportunity to examine differences 
between ​​g​IO​​​ and ​​g​IA​​​. In Figure 10 we graph the differences in expected value by age 
from initiating IVF for the first time. The largest difference in value is between ages 
35 and 40, when insurance’s price benefit is reduced but not zero. Although the total 
reduction in price benefit is greater for patients above age 40, the reduced likelihood 
of a birth at these ages dampens the value difference between the policies. It is inter-
esting to note that patients younger than age 35 also have a lower expected value 
of initiating treatment under ​​g​IA​​​. This is due to cycles after age 35 being subject to 
the reduced price benefit. Note that if patients were myopic, the two policies would 
have the same value for patients initiating before age 35. The dynamic effects of ​​g​IA​​​ 
are also apparent in simulated treatment histories for patients who initiate treatment 
between ages 33 and 35. Among patients who take more than one cycle in total, the 
average number of quarters between treatments is ​6.0​ under ​​g​IO​​,​ but the patients 
under ​​g​IA​​​ delay ​5.3​ quarters on average. A similar reduction in delay occurs for 
patients who initiate between ages ​35​ and ​40​.

IX.  Conclusions

Health care policymakers face the challenge of designing policies that simulta-
neously improve access to care and contain costs. These challenges are particularly 
acute in the market for IVF, where treatment is costly, outcomes are uncertain, and 
there is substantial variation in insurance coverage for the procedure. A variety 
of policies have been proposed to address these issues, ranging from universal 
insurance mandates to cover IVF, to restrictions on treatment choice in the form 
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of embryo caps. To investigate the impact of these and other policies on patient 
welfare, outcomes, and health care costs, we estimate a structural dynamic model 
of the treatment choices made by infertile women undergoing IVF. Our frame-
work incorporates important mechanisms influencing these decisions, including 
patient preferences, the evolution of patient health, IVF treatment technologies, 
and financial incentives. In addition to the treatment initiation decision, our model 
highlights the key trade-off faced by women undergoing IVF: more aggressive 
treatment choices increase the likelihood of a birth, and so reduce future treat-
ment costs, but also increase the possibility of potentially undesirable higher-or-
der births. We apply the model to a unique dataset of women undergoing IVF 
treatment at a major clinic in the St. Louis, MO, area between 2001 and 2009. The 
clinic is situated such that it draws clients from both the Illinois side of the St. 
Louis metro area, where IVF is covered under a mandated insurance benefit, and 
the Missouri side, where it is not. Consequently, patients being treated at the clinic 
face very different financial incentives.

Counterfactual simulations from our model show that a universal mandate to 
cover IVF substantially increases patient welfare by increasing IVF use. However, 
the mandate also increases both treatment and birth costs. We find similar results for 
an outcome-based policy that insures births as opposed to treatment. Embryo caps 
have been proposed as a way to reduce the relatively high rates of expensive multiple 
births associated with IVF. We find that a policy of single embryo transfer (simultane-
ous with insured treatment) does indeed substantially lower aggregate costs, but this 
reduction is largely due to a reduction in patients who initiate treatment. Due to low 
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Figure 10. Difference in Patient Expected Value at Initiation between IO and IA

Note: The vertical axis plots the difference between expected value from policy IO (universal insured outcome) 
minus IA (insured outcome with age-adjusted benefits).
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birth probabilities with an embryo cap, the total cost per birth is greater than when no 
patients have insurance. In addition, our estimates imply that patients receive positive 
utility from twin births, which are limited under the embryo cap.

Given that neither unrestricted universal insurance nor embryo caps achieves the 
dual goals of increased access and lower per-birth costs, we propose a “value-based” 
policy in the spirit of Baicker, Shepard, and Skinner (2013) and Einav, Finkelstein, 
and Williams (2016) in which all patients receive insurance coverage for the transfer 
of a single embryo, but then must pay a top-up price of $12,000–$19,000 if they 
wish to transfer additional embryos. These prices are chosen to fully internalize the 
expected medical costs of more aggressive treatments. This policy generates more 
patient surplus than the embryo cap or the no-insurance benchmark, and insurance 
plus medical costs are lower than the no-insurance benchmark as well. In addition, 
there is room to reduce the top-up prices below their fully internalizing level in an 
effort to increase patient surplus while still achieving significant cost savings.

Our study of IVF has several contributions for other areas of health economics. 
We emphasize the importance of how future treatment opportunities affect today’s 
choices, which is also important in several diseases with long-term treatment strate-
gies, such as heart disease and cancer. Our consideration of top-up prices is relevant 
for insurance policy in areas where patients may have discretion over treatment 
approach, which can be particularly important in areas where compromises must 
be struck between patients’ utility and other medical concerns or costs. Finally, our 
framework illustrates the benefits of using a welfare approach to evaluate policies 
which may be different in structure (e.g., treatment- or outcome-based insurance) or 
different in goals (e.g., patients’ surplus or number of births).

The favorable outcomes of the top-up price policies naturally leads to a question 
of why these contracts have not yet emerged in the real world. To understand this, 
it is important to distinguish between plans offered by insurers under a mandate, 
versus offerings by insurers not subject to a mandate. In a setting without mandates, 
adverse selection and unraveling could result in individual insurers being unwilling 
to offer unilaterally any plans with IVF coverage. Our results show that, in principle, 
insurers could be better off under a mandate which allows them to coordinate 
offering coverage for IVF access while encouraging less aggressive embryo transfer 
behavior through embryo caps or top-up prices.

Appendix A. Distribution of Types among Potential Patients

After estimating the model of decision making within the clinic, we 
know ​​θ ˆ ​ = ​(​φ ˆ ​, ​ζ ˆ ​, ​ρ ˆ ​)​​ and therefore ​W​(​Z​ ​a​0​​​ 

D ​ , τ, ​g​E​​ , ​φ ˆ ​, ​ζ ˆ ​)​.​ We also know

(A1)	 ​Pr​(τ = 2| ​Z​ ​a​0​​​ 
D ​ , I = 1, ​ρ ˆ ​)​  =  Λ([ 1, ​Z​ ​a​0​​​ 

D ​ ]​ρ ˆ ​).​

In addition, from the treatment initiation model we know, for each possible ​μ​(​z​r​​)​​ 
and ​​Z​ ​a​0​​​ 

D ​ ,​ the race-specific initiation rate among potential patients of each type. That 
is, we know

(A2)	​ Λ​(W​(​Z​ ​a​0​​​ 
D ​ , τ, ​φ ˆ ​, ​ζ ˆ ​)​ − μ​(​z​r​​)​)​  for τ = 1, 2 and ​z​r​​ = 0, 1​.
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For each ​​Z​ ​a​0​​​ 
D ​​ we also know the total (i.e., unconditional on type) number of women 

of each race with other demographic characteristics ​​Z​ ​a​0​​​ 
D ​​ who came into the clinic. 

Let this number be ​​N​ ​Z​ ​a​0​​​ 
D ​​ 

clin​​(​z​r​​)​.​ Together with ​Pr​(τ = 1|​Z​ ​a​0​​​ 
D ​, ​I​i​​ = 1, ​̂  ρ​)​​ we then have an 

estimate of the race-specific number of patients of type 1 with characteristics ​​Z​ ​a​0​​​ 
D ​​ 

who came into the clinic, say ​​N​ ​Z​ ​a​0​​​ 
D ​, 1, ​z​r​​

​ clin ​​ (​̂  ρ​)​,​ where

(A3)	​​ N​ ​Z​ ​a​0​​​ 
D ​, 1, ​z​r​​

​ clin ​​ (​ρ ˆ ​)​  = ​ N​ ​Z​ ​a​0​​​ 
D ​​ 

clin​​(​z​r​​)​ × ​[1 − ​f​τ​​​(τ  =  2 | ​Z​ ​a​0​​​ 
D ​ , I = 1, ​ρ ˆ ​)​]​.​

Similarly for type 2, we know

(A4)	​​ N​ ​Z​ ​a​0​​​ 
D ​, 2, ​z​r​​

​ clin ​​ (​ρ ˆ ​)​  = ​ N​ ​Z​ ​a​0​​​ 
D ​​ 

clin​​(​z​r​​)​ × ​f​τ​​​(τ = 2 | ​Z​ ​a​0​​​ 
D ​, I  =  1, ​ρ ˆ ​)​.​

Note that while ​​N​ ​Z​ ​a​0​​​ 
D ​​ 

clin​​(​z​r​​)​​ is data, ​​[​N​ ​Z​ ​a​0​​​ 
D ​, 1, ​z​r​​

​ clin ​ ​(​̂  ρ​)​, ​N​ ​Z​ ​a​0​​​ 
D ​, 2, ​z​r​​

​ clin ​ ​(​̂  ρ​)​]​​ depend on ​ρ,​ which is 

identified by the differential behavior of the two types in the (within-clinic) patient 
histories. Recall that ​ρ​ parameterizes the within-clinic distribution of types and is 
estimated in our second step with ​​(φ, ζ)​.​

Given ​μ​(​z​r​​)​​ , from the initiation model we know that ​

100 × Λ​(W​(​Z​ ​a​0​​​ 
D ​ , τ, ​φ ˆ ​, ​ζ ˆ ​)​ − μ​(​z​r​​)​)​​ percent of potential patients of a given race, 

with additional initial nonbiological states ​​Z​ ​a​0​​​ 
D ​​ and type ​τ​ will choose to initiate 

treatment. We also know that there we predict ​​N​ ​Z​ ​a​0​​​ 
D ​, τ, ​z​r​​

​ clin ​​ (​ρ ˆ ​)​​ patients of type ​τ​. Then, 
it must be the case that the number of potential patients of each type, with that com-
bination of demographic states ​​Z​ ​a​0​​​ 

D ​​ and for that ​race​ is given by

(A5)	​​ N​ ​Z​ ​a​0​​​ 
D ​, 1, ​z​r​​

​ inf ​   = ​ 
​N​ ​Z​ ​a​0​​​ 

D ​, 1, ​z​r​​
​ clin ​​ (​̂  ρ​)​
  ______________________   

Λ​(W​(​Z​ ​a​0​​​ 
D ​ , τ  =  1, ​  φ​)​ − μ​(​z​r​​)​)​

 ​

	 = ​ 
​N​ ​Z​ ​a​0​​​ 

D ​​ 
clin​​(​z​r​​)​ ​[1 − Λ( [ 1, ​Z​ ​a​0​​​ 

D ​ ]​ρ ˆ ​)]​
   ______________________   

Λ​(W​(​Z​ ​a​0​​​ 
D ​ , τ  =  1, ​  φ​)​ − μ​(​z​r​​)​)​

 ​ ​,

(A6)	​​ N​ ​Z​ ​a​0​​​ 
D ​, 2, ​z​r​​

​ inf ​   = ​ 
​N​ ​Z​ ​a​0​​​ 

D ​, 2, ​z​r​​
​ clin ​​ (​ρ ˆ ​)​
  _______________________   

Λ​(W​(​Z​ ​a​0​​​ 
D ​ , τ = 2, ​φ ˆ ​, ​ζ ˆ ​)​ − μ​(​z​r​​)​)​

 ​

	 = ​ 
​N​ ​Z​ ​a​0​​​ 

D ​​ 
clin​​(​z​r​​)​ Λ( [ 1, ​Z​ ​a​0​​​ 

D ​ , ​z​r​​ ]​ρ ˆ ​)
   _______________________   

Λ​(W​(​Z​ ​a​0​​​ 
D ​ , τ  =  2, ​φ ˆ ​, ​ζ ˆ ​)​ − μ​(​z​r​​)​)​

 ​ .​

Then we can estimate the unconditional (i.e., not conditional on ​I = 1​) prevalence 
of type 2 among potential patients of that race with state ​​Z​ ​a​0​​​ 

D ​​ as

(A7)� ​​f​τ |​z​r​​​​​(τ = 2|​Z​ ​a​0​​​ 
D ​)​ ≈ ​ 

​N​ ​Z​ ​a​0​​​ 
D ​, 2, ​z​r​​

​ inf ​
  _____________  

​N​ ​Z​ ​a​0​​​ 
D ​, 1, ​z​r​​

​ inf ​  + ​N​ ​Z​ ​a​0​​​ 
D ​, 2, ​z​r​​

​ inf ​
 ​ = ​​

⎛

 ⎜ 
⎝

1 + ​

⎡

 ⎢ 
⎣

​ 

​ 
1 − Λ( [ 1, ​Z​ ​a​0​​​ 

D ​ ]​ρ ˆ ​)
   ______________________   

Λ​(W​(​Z​ ​a​0​​​ 
D ​ , τ = 1, ​φ ˆ ​)​ − μ​(​z​r​​)​)​

 ​

   ________________________   
​ 

Λ( [ 1, ​Z​ ​a​0​​​ 
D ​ ]​ρ ˆ ​)
  _______________________   

Λ​(W​(​Z​ ​a​0​​​ 
D ​ , τ = 2, ​φ ˆ ​, ​ζ ˆ ​)​ − μ​(​z​r​​)​)​

 ​
 ​

⎤

 ⎥ 
⎦

​

⎞

 ⎟ 
⎠

​​​ 

−1

​.​
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Note that for given ​μ​(​z​r​​)​​ , everything in the RHS is known, so ​​f​τ |​z​r​​​​​(τ  =  2| ​Z​ ​a​0​​​ 
D ​)​​ 

is known and so is ​​f​τ|​z​r​​​​​(τ = 1|​Z​ ​a​0​​​ 
D ​)​ = 1 − ​f​τ |​z​r​​​​​(τ = 2| ​Z​ ​a​0​​​ 

D ​, ​z​r​​)​.​ If, for a given race, 
both types were to select into the clinic at the same rate (i.e., they do not really 
have different preferences for children), we would have ​W​(​Z​ ​a​0​​​ 

D ​ , τ = 1, ​g​E​​ , θ)​ 

= W​(​Z​ ​a​0​​​ 
D ​ , τ = 2, ​g​E​​ , θ)​​ so ​​ 

Λ​(W​(​Z​ ​a​0​​​ 
D ​ , τ  =  1, θ)​ − μ​(​z​r​​)​)​

   _________________   
Λ​(W​(​Z​ ​a​0​​​ 

D ​ , τ  =  2, θ)​ − μ​(​z​r​​)​)​
 ​ = 1​ and the distribu-

tion of types within the clinic and among potential patients would be the 
same, ​​f​τ |​z​r​​​​​(τ  =  2| ​Z​ ​a​0​​​ 

D ​ , I = 1)​ = ​f​τ |​z​r​​​​​(τ = 2| ​Z​ ​a​0​​​ 
D ​)​​ , which is not consistent with our 

estimates.

Appendix B. Approximating ​​N​​ inf​​ and ​​f​​Z​​ D​​​​(​Z​ ​a​0​​​ 
D ​)​​

To obtain a model-predicted IVF initiation rate among potential patients of each 
race we must use an estimate of ​​f​​Z​​ D​|​z​r​​​​​(​Z​ ​a​0​​​ 

D ​)​​. Note that since the expected value of 
initiation depends on ​​Z​ ​a​0​​​ 

D ​ ,​ the distribution of ​​Z​ ​a​0​​​ 
D ​​ among patients who initiate dif-

fers from the distribution among potential patients. In particular, we expect active 
patients at the clinic to be older, more likely to be covered by insurance, wealthier, 
and less likely to be African American. To approximate ​​f​​Z​​ D​​​​(​Z​ ​a​0​​​ 

D ​)​​ among potential 
patients we use the following assumptions.

ASSUMPTION 0 (Exogenous ASRM Guidelines): The particular ASRM guidelines 
in place are independent of everything else in the model:

(A8)	​ asrm  ⊥ ​ (​Z​​ B​, ​ι​​a​0​​​​ , ​z​w​​ , ​a​0​​ , ​z​r​​)​.​

ASSUMPTION 1 (Conditional Independence): Conditional on age at initiation, the 
three biological state variables related to infertility, ​​Z​​ B​​ , are independent of insur-
ance, wealth, and race:

(A9)	 ​​Z​​ B​  ⊥ ​ (​ι​0​​ , ​z​w​​ , ​z​r​​)​ | ​a​0​​ .​

Note that Assumption 1 and the fact that the value of ​​Z​​ B​​ only becomes observable 
after deciding to start a first cycle, imply that these variables will have the same 
conditional (on age) distribution in the risk set and in the clinic:

(A10)	​ f ​(​Z​​ B​ | ​a​0​​)​  =  f ​(​Z​​ B​ | ​a​0​​ , I = 1)​.​

ASSUMPTION 2 (Surprise): Individuals only become aware of their infer-
tility at age ​​a​0​​​. Therefore, the joint distribution of wealth and insurance cov-
erage among women at ​​a​0​​​ should be independent of whether they have any 
infertility problem (i.e., independent of whether they are among the poten-
tial patients). Therefore, ​Pr​(​ι​​a​0​​​​ , ​z​w​​ , ​z​r​​ | ​a​0​​)​​ is the same regardless of whether 
a woman is a potential patient. We further assume that ​Pr​(​ι​​a​0​​​​ , ​z​w​​ , ​z​r​​ | ​a​0​​)​ 
= Pr​(​ι​​a​0​​​​ , ​z​w​​ , ​z​r​​)​​ for all ​​a​0​​ .​
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Using these assumptions, we can approximate the joint distribution of all state 
variables among potential patients as ​​f​Z​​​(​Z​​a​0​​​​)​ = ​f​Z​​​(​Z​ ​a​0​​​ 

D ​ , ​Z​​ B​)​ = ​f​​Z​​ B​​​​(​Z​​ B​ | ​Z​ ​a​0​​​ 
D ​)​ ​f​​Z​​ D​​​​(​Z​ ​a​0​​​ 

D ​)​.​

First, note that by Assumptions 0 and 1, ​​f​​Z​​ B​​​​(​Z​​ B​ | ​Z​ ​a​0​​​ 
D ​)​ = ​f​​Z​​ B​​​​(​Z​​ B​ | ​a​0​​)​ 

= ​f​​Z​​ B​​​​(​Z​​ B​ | ​a​0​​ , I = 1)​​ and we can easily construct an estimate ​​​  f​​​Z​​ B​​​​(​Z​​ B​ | ​a​0​​ , I = 1)​​ 
using patient data. So we only need to focus on ​​f​​Z​​ D​​​​(​Z​ ​a​0​​​ 

D ​)​​ , which is the critical input 
for the share-matching procedure described in Section VIIB. By Assumption 0,

(A11)	​ ​f​​Z​​ D​​​​(​Z​ ​a​0​​​ 
D ​)​ = ​f​​a​0​​, ​ι​​a​0​​​​, ​z​w​​, ​z​r​​​​​(​a​0​​ , ​ι​​a​0​​​​ , ​z​w​​ , ​z​r​​)​ ​f​asrm​​​(​z​asr​m​​a​0​​​​​​)​.​

To estimate ​​f​​a​0​​, ​ι​​a​0​​​​, ​z​w​​, ​z​r​​​​​(​a​0​​ , ​ι​​a​0​​​​ , ​z​w​​ , ​z​r​​)​​ we note that

	​​ f​​a​0​​, ​ι​​a​0​​​​, ​z​w​​, ​z​r​​​​​(​a​0​​ , ​ι​​a​0​​​​ , ​z​w​​ , ​z​r​​)​  =  ​ f​​a​0​​, ​ι​​a​0​​​​, ​z​w​​|​z​r​​​​​(​a​0​​ , ​ι​​a​0​​​​ , ​z​w​​ | ​z​r​​)​ ​f​​z​r​​​​​(​z​r​​)​

	 = ​ f​​a​0​​|​z​r​​​​​(​a​0​​ | ​z​r​​)​ ​f​​ι​​a​0​​​​, ​z​w​​|​z​r​​​​​(​ι​​a​0​​​​ , ​z​w​​ | ​z​r​​)​ ​f​​z​r​​​​​(​z​r​​)​​.

Distribution of Age Among Potential Patients: We first estimate ​​f​​a​0​​|​z​r​​​​​(​a​0​​ | ​z​r​​)​​ using 
data from the St. Louis region on (first) births and the maternal age associated with 
those births, by race. Also because of Assumption 2, this gives us the distribution of 
age at first attempted birth (regardless of whether the attempt was successful) when 
combined with estimates of race-specific infertility rates by age. This provides the 
race-specific age distribution for our potential patients.

Joint Distribution of IVF Coverage and Wealth: Finally we collect data on the 
joint distribution of IVF coverage and wealth, ​​(ι, ​z​w​​)​​ conditional on race. To esti-
mate ​​f​​ι​​a​0​​​​, ​z​w​​|​z​r​​​​​(​ι​​a​0​​​​ , ​z​w​​ | ​z​r​​)​​ we consider

	​​ f​​ι​​a​0​​​​, ​z​w​​|​z​r​​​​​(​ι​​a​0​​​​ , ​z​w​​ | ​z​r​​)​  =  ​ f​​ι​​a​0​​​​|​z​w​​, ​z​r​​​​​(​ι​​a​0​​​​ | ​z​w​​ , ​z​r​​)​ ​f​​z​w​​|​z​r​​​​​(​z​w​​ | ​z​r​​)​

	 =  ​ f​​ι​​a​0​​​​|​z​w​​​​​(​ι​​a​0​​​​ | ​z​w​​)​ ​f​​z​w​​|​z​r​​​​​(​z​w​​ | ​z​r​​)​​,

and develop a strategy at the zip code level for estimating ​​f​ι​​​(ι| ​z​w​​)​​ and ​​f​​z​w​​|​z​r​​​​​(​z​w​​ | ​z​r​​)​​ 
using information from zip codes whose center is located within 75 miles from our 
clinic. To estimate ​​f​​z​w​​|​z​r ​​​​​(​z​w​​ | ​z​r​​)​​ we assume patients from same zip code are homo-
geneous regarding ​​(ι, ​z​w​​)​​. In particular, we know whether each zip code in the St. 
Louis area is considered “wealthy” by construction: we defined ​​z​w, l​​ = 1​ if zip code ​
l​’s median home value is above $100,000. This is consistent with the way we are 
defining a patient to be “wealthy” or not (i.e., whether she comes from a zip code 
where the median home value is above $100,000). We estimate ​​f​​z​w​​|​z​r​​​​​(​z​w​​ | ​z​r​​)​​ by

(A12)	​ ​f​​z​w​​|​z​r​​​​​(​z​w​​  =  1| ​z​r​​)​  = ​  ∑ 
l∈STL

​​​ I​{​z​w, l​​  =  1}​ ​{​  ​P​ l​ ​z​r​​​ ________ 
​∑ m∈STL​   ​​ ​ P​ m​ ​z​r​​ ​

 ​}​​,

where ​​P​ l​ ​z​r​​​​ is the population of a given ​race​ ​​(​z​r​​)​​ in zip code ​l​ within the St. Louis 
region. We have the population by race for each zip code, so we can construct ​​P​ l​ ​z​r​​​​ 
easily.
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To estimate ​Pr​(ι | w)​​ we take the following steps. We have the percentage of the 
population who has private insurance for each zip code ​l​ within the St. Louis area:  
​​f​priv​​​(pri​v​l​​)​​. We obtain this from the 2012 American Community Survey (ACS) five-
year estimate. A 2005 Mercer Survey of Employer Health Insurance Plans (Mercer 
Health Resources Consulting 2006) reported that 19 percent of large employers 
(500+ employees) and 11 percent of all firms (25+ employees) offered some form 
of IVF coverage as part of their health plans. We assume these same rates apply 
to Missouri zip codes. We then use data on the national size distribution of firms 
and employment in 2005 from the US Census Bureau’s Statistics of US Business 
(SUSB) showing that among firms with 20+ employees, 60.7 percent of employees 
work for large firms, which account for only 2.87 percent of all US firms. Therefore, 
we use the adjustment factor ​​ψ​​ MO​ = 0.15​ to adjust the raw insurance coverage rates 
we obtain from the ACS. Then the IVF coverage for each Missouri zip code ​l​ is 
given by ​​f​IVF​​​(​ι​ l​ IVF​)​ =​ ​​f​priv​​​(pri​v​l​​)​ × ​ψ​​ MO​.​

Regarding Illinois counties, we know that there is a mandate. But small employ-
ers (<25 employees) and self-insured employers (regardless of size) are exclud-
ed.42 According to a Kaiser Family Foundation (2007) report, 55 percent of workers 
nationally are covered by plans that are partially or fully self-insured.43 So we adjust 
the raw county-level employer-sponsored health insurance coverage rate by the per-
centage of large employers and the percentage not self-funded and assume that no 
firm with fewer than 25 employees provides IVF coverage. We obtain the following 
adjustment factor for Illinois counties ​​ψ​​ IL​  = ​ (0.215 × 0 + 0.785 × [0.45 × 1 + 
0.55 × 0.19])​  =  0.435​. Then the IVF coverage for each Illinois zip code ​l​ is given 

by ​​f​IVF​​​(​ι​ l​ IVF​)​ =​ ​​f​priv​​​(pri​v​l​​)​ × ​ψ​​ IL​.​

We then compute the aggregate IVF coverage rate for the region conditional on 
wealth. First, we condition on ​​z​w​​  =  0​ and compute

(A13)	​ Pr​(ι = 4| ​z​w​​ = 0)​  = ​  ∑ 
l:​w​l​​=1

​​​ ​f​IVF​​​(​ι​ l​ IVF​)​ ​
(

​  ​π​l​​ _______ 
​∑ l:​w​l​​=1​   ​​​ π​l​​

 ​
)

​.​

Regarding coverage conditional on high wealth (​​z​w​​ = 1)​ we take a different approach. 
Since most of the wealthy zip codes are on the Missouri side but ​​ψ​​ MO​​ is very low 
relative to ​​ψ​​ IL​,​ if we pool zip codes together in the aggregation we would end up 
with a spurious negative correlation. Therefore, we compute ​Pr​(ι = 4| ​z​w​​ = 1)​​ in 
the following way:

	​ Pr​(ι = 4| ​z​w​​ = 1)​  =  Pr​(ι = 4| ​z​w​​ = 0)​ + ​Δ ˆ ​,​

where

(A14)	​​ Δ ˆ ​  = ​(​ 
​∑ l:​w​l​​=1, l∈IL​   ​​​ π​l​​  __________ 

​∑ l:​w​l​​=1​   ​​​ π​l​​
 ​ )​ ​​Δ ˆ ​​IL​​ + ​(​ 

​∑ l:​w​l​​=1, l∈MO​   ​​​ π​l​​  ___________  
​∑ l:​w​l​​=1​   ​​​ π​l​​

 ​ )​ ​​Δ ˆ ​​MO​​.​

42 Under this alternative definition of small employer, we interpolate the numbers in Moscarini and Postel-Vinay 
(2012) and find that 21.5 percent of employment is accounted for by firms with fewer than 25 employees. 

43 We assume that in these self-funded plans the same rate found in the Mercer survey (19 percent) for large 
employers applies. This is probably an upper bound because large employers here also include firms with 25 to 499 
employees, not just those with 500+ as in the Mercer study definition. 
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Note, ​​​Δ ˆ ​​s​​​ provides the estimated average increase in IVF coverage observed for state ​
s​ when one moves from poor zip codes to wealthy zip codes within that state:

​​​Δ ˆ ​​s​​ = ​
[
​  ∑ 
l:​w​l​​=1, l∈s

​​​ ​f​IVF​​​(IV​F​l​​)​​(
​  ​π​l​​ __________  
​∑ l:​w​l​​=1, l∈s​   ​​​ π​l​​

 ​
)

​
]
​ − ​

[
​  ∑ 
l:​w​l​​=0, l∈s

​​​ ​f​IVF​​​(IV​F​l​​)​​(
​  ​π​l​​ __________  
​∑ l:​w​l​​=0, l∈IL​   ​​​ π​l​​

 ​
)

​
]
​​,

for ​s =​ IL, MO. The results indicate that IVF insurance coverage rate depends of 
wealth. Among poor potential patients, 83 percent have ​ι = 0​ and 17 percent have ​
ι = 4​. For wealthy potential patients, 75 percent have ​ι = 0​ and 25 percent have ​
ι = 4​.

Size of Potential Patient Pool: In addition to the joint distribution of character-
istics among potential patients, we need the size of the potential patient pool ​​N​​ inf​​. 
We use ​​​N ̃ ​​​ inf​​ to refer to all potential patients in the St. Louis area, and ​​N​​ inf​​ for the 
subset who might consider the clinic we study. We count the race-specific number 
of women of each age in the St. Louis region that give birth naturally to a first birth 
in any given quarter. Let this number be ​​​N 

–
 ​​a, ​z​r​​​​​ , which we obtain from Vital Statistics. 

The total number of women who attempt their first pregnancy at age ​a​ is ​​N​ a, ​z​r​​​ 
stl  ​ .​ 

Of these, ​​​N 
–
 ​​a, ​z​r​​​​​ succeed and have births recorded in Vital Statistics; the group that 

fails, ​​​N ̃ ​​ a, ​z​r​​​ 
inf ​  ,​ contributes to our set of potential patients. Therefore, ​​N​ a, ​z​r​​​ 

stl  ​ = ​​N 
–
 ​​a, ​z​r​​​​ + ​​N ̃ ​​ a, ​z​r​​​ 

inf ​  .​ 
Then, using infertility rates by age and race among women who are attempting 

to get pregnant, ​inf ​(a, ​z​r​​)​,​ we back out ​​​N ̃ ​​ a, ​z​r​​​ 
inf

 ​ = ​ 
inf ​(a, ​z​r​​)​  ___________  

​[1 − inf ​(a, ​z​r​​)​]​
 ​ ​​N 

–
 ​​a​​.​ According to 

Vital Statistics, the larger counties in and around the St. Louis region have an aver-
age of ​1,172​ first births each quarter distributed among mothers aged 28 to 44. 
To capture births occurring in the more rural areas, but still within our 75-mile 
radius area, we also estimate the births occurring in smaller counties within 
this area. An additional 10.4 percent of births come from these counties.44 So  
​​​N 
–
 ​​ 28−44​ 75m

  ​​ = 1,172 × 1.104  =  1,294. Using infertility rates by age and race and sum-
ming across ages, we can then determine that there are ​​​N ̃ ​​ t​ inf​​ = 257 × 1.104 = 284 
new potential patients, on average, each quarter.45 Since there are ​28​ quarters 
between 2001 and 2007, the size of the potential patient pool for our sample period 
is then ​​​N ̃ ​​ 2001−07​ 

 inf
  ​ = 28 × ​​N ̃ ​​​ inf​ = 28 × 284  = 7,944.​ While this pool of potential 

patients is valid for the full St. Louis area, our clinic has market share ​​s​​ clin​ < 1.​ 
According to the CDC, the clinic we observe has market share of about one-third, 
and we adjust ​​​N ̃ ​​ 2001−07​ 

 inf
  ​​ in a proportional way. Ultimately the potential-patient popu-

lation for our clinic is ​​N​​ inf​​ = 2,781. Of these, 486 are black and 2,295 are non-black.

44 Births occurring in smaller counties are combined and reported into a single residual county for each state in 
Vital Stats. So we know how many first births occurred in these “residual” counties. We also know how important 
(in terms of number of households) the zip codes belonging to small counties but located within the 75-mile radius 
are as a share of the each state specific residual county. Therefore, we can augment the number of births in the 
relevant area by assuming that the same share of births comes from these zip codes. 

45 To obtain age-specific infertility rates inf ​​(a, ​z​r​​)​​ , we interpolate between ages 28 to 39 and extrapolate for ages 
40–44 the 12-month infertility estimates reported in Dunson, Baird, and Colombo (2004) and adjust these estimates 
using relative rates of infertility between black and white women from based on data from NSFG. 
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